

Normalisation du CECB

Version 2.2.0

Approuvé lors de l'Assemblée plénière de la Conférence des directeurs cantonaux de l'énergie du 18 mars 2024 à Berne.

Mandant

Association GEAK-CECB-CECE Bäumleingasse 22 4051 Bâle

Mandataire

Haute école spécialisée de la Suisse du Nord-Ouest FHNW Institut Nachhaltigkeit und Energie am Bau INEB Hofackerstrasse 30 4132 Muttenz www.fhnw.ch/habg/ineb/

Auteure

Monika Hall

Avec le soutien de

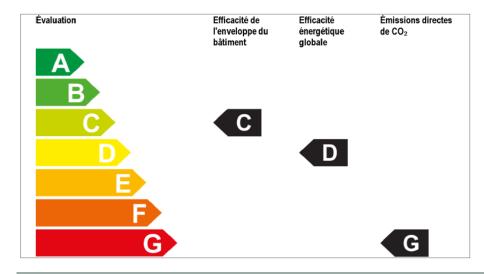
Christian Amoser (FHNW)
Matthias Bringolf (FHNW)
Daniel Fuchs (FHNW)
Olivier Meile (CECB)
Gregor Steinke (FHNW)
Karine Wesselmann (FHNW)

Sommaire

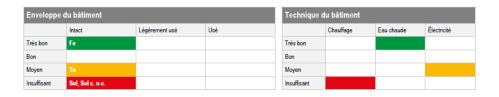
1	Introduction	on	7						
	1.1 Obje	ctif	7						
	1.2 Affec	tations mixtes	7						
	1.3 Rem	arques	8						
2	Besoins d	esoins de chaleur pour le chauffage							
3	Chauffage	e et eau chaude sanitaire	11						
	3.1 Géné	éralités	11						
	3.2 Prod	ucteur de chaleur	11						
	3.3 Poêle	e à bois comme chauffage d'appoint	12						
	3.4 Type	s d'accumulateurs	12						
	3.5 Dépe	erditions de chaleur	14						
	3.5.1	Déperditions de chaleur du producteur de chaleur	14						
	3.5.2	Déperditions liées à la distribution de la chaleur	14						
	3.5.3	Déperditions de chaleur liées à l'accumulateur	18						
	3.6 Attrib	oution des déperditions thermiques aux producteurs de chaleur	21						
	3.7 Dépe	erditions récupérées pour le chauffage	24						
	3.8 Éner	gie finale	26						
	3.9 Éner	gie auxiliaire	28						
	3.10 Table	eaux de référence Chauffage et Eau chaude sanitaire	31						
4	Ventilation	ı	36						
	4.1 Généralités								
	4.2 Petite	es installations avec valeurs standard	38						
	4.3 Autre	es installations de ventilation	40						
	4.4 Table	eau de référence Ventilation	42						
5	Electricité	produite sur place : photovoltaïque, cogénération, CCF	44						
3	Électricité		45						
	6.1 Géné	eralités	45						
	6.2 Habi	tat	46						
	6.2.1	Généralités	46						
	6.2.2		47						
	6.2.3		50						
	6.2.4	Éclairage Écl	50						
	6.2.5	Autres consommateurs ACE (WVA)	51						
	6.3 Table	eau de référence Habitation	52						
	6.4 Bâtin	nents non résidentiels	55						
	6.4.1	Généralités	55						
	6.4.2	Équipements d'exploitation et appareils B+G	55						
		Éclairage Écl	56						
	6.4.4	Autres consommateurs ACE (WVA)	56						

	6.5 Tableaux de référence Bâtiments non résidentiels					
	6.5.1	Tableaux de référence Électricité Administration	57			
	6.5.2	Tableaux de référence Électricité Écoles	58			
	6.5.3	Tableaux de référence Électricité Commerces	59			
	6.5.4	Tableaux de référence Électricité Restaurants	60			
	6.5.5	Tableaux de référence Électricité Hôtels	61			
7	Étiquette		62			
	7.1 Valeu	ur de projet	62			
	7.1.1	Enveloppe du bâtiment	62			
	7.1.2	Efficacité globale	62			
	7.1.3	Émissions directes de CO ₂	63			
	7.1.4	Émissions de gaz à effet de serre (EGES)	64			
	7.2 Valeu	ur de référence	66			
	7.2.1	Enveloppe du bâtiment	66			
	7.2.2	Efficacité globale	66			
	7.2.3	Émissions de CO ₂	67			
	7.3 Indice	es et classification	68			
	7.3.1	Indices Enveloppe du bâtiment	68			
	7.3.2	Indice Efficacité globale	68			
	7.3.3	Classification de l'enveloppe du bâtiment et de l'efficacité énergétique globale	68			
	7.3.4	Classification des émissions directes de CO ₂	69			
8	Évaluation	ı	70			
	8.1 Enveloppe du bâtiment					
	8.2 Installations techniques du bâtiment					
9	·					
10	O Symboles, unités et notions 76					

Index des versions


Version	Date	Modification	Emplacement
2.2.0	18.03.2024	Energie auxiliaire circulation/bande chauffante	Éq. 22/23
		Nouveau tableau pour la durée d'exploitation des	Tab. 8
		conduites de distribution pour l'énergie auxiliaire	
		Complément température de départ VL 40/32	Tab. 3 et 4
		Correction VL 50/38	Tab. 4
		Diverses adaptations de textes	
2.1.0	30.03.2023	Complément température de départ	Tab. 3, Tab 4
		Méthodologie cogénération/CCF	Chap. 5
		Méthodologie de calcul des émissions de gaz à effet de serre (EGES)	Chap. 7.1
		Traitement du biogaz	Chap. 7.1
		Complément selon le chapitre 9 du Règlement des produits de l'association CECB du 1.1.2023	Chap. 6.2.1 Chap. 6.2.5
		Divers améliorations linguistiques	
2.0.1	18.09.2022	Actualisation des illustrations	III. 1, 2
		Complément/correction de légende	Éq. 4, 8, 9
		Complément de légende	Éq. 17, 18
		Correction énergie auxiliaire de chauffage	Éq. 19
		Correction énergie auxiliaire eau chaude	Éq. 21
		Correction de titres de colonnes	Tab. 6
		Actualisation de paramètres	Tab. 11
		Ajout de nouveaux producteurs de chaleur	Tab. 11
		Complément biogaz	Tab. 36
		Complément fcor	Tab. 39
		Actualisation du texte	P. 61
2.0.0	18.03.2021	Poêle à bois comme chauffage d'appoint	Chap. 3.2, 3.3
		Déperditions liées à la distribution de la chaleur	Chap. 3.5.2
		Déperditions liées à l'accumulateur	Chap. 3.5.3
		Attribution des déperditions liées à l'accumulateur	Chap. 3.6
		Déperditions récupérées pour le chauffage	Chap. 3.7
		Énergie finale	Chap. 3.8
		Énergie auxiliaire	Chap. 0
		Introduction d'une étiquette pour les émissions de	Chap. 7
		CO ₂	Chap. 9
		Mise à jour de la bibliographie	Chap. 10
		Mise à jour des symboles, unités et notions	III. 3
		Mise à jour du diagramme de flux Chauffage	III. 4
		Mise à jour du diagramme de flux Eau chaude	III. 5
		Mise à jour du diagramme de flux Ventilation	Tab. 10
		Suppression des accu solaire Centralisé + décentralisé	Tab. 11

			Déperditions liées aux manchons de l'accumulateur	
			Complément Poêle à bois comme chauffage d'appoint	Tab. 12
			Passage à la norme SIA 380/1:2016	Divers endroits
1.0.1		27.11.2020	Correction formule facteur d'occupation	p. 45, Éq. 36
1.0.0)	09.03.2020	1 ^{re} édition	-


1 Introduction

1.1 Objectif

La normalisation du CECB définit la méthodologie de calcul des valeurs caractéristiques et la classification de l'efficacité de l'enveloppe du bâtiment, de l'efficacité énergétique globale et des émissions directes de CO₂ (III. 1).

III. 1 Étiquette du CECB.

III. 2 Évaluation de l'enveloppe et des installations techniques du bâtiment figurant à la page 2 du document CECB.

1.2 Affectations mixtes

Dans le CECB, il est possible de représenter jusqu'à trois affectations dans un bâtiment en cas d'affectations mixtes. Elles sont prises en considération proportionnellement à leur surface de référence énergétique respective.

Les besoins de chaleur pour le chauffage sont calculés dans un modèle à zone unique sur l'ensemble du bâtiment. Les différentes affectations sont prises en compte avec leur surface de référence énergétique ainsi que les données d'utilisation standard correspondantes pondérées en fonction de la surface. Les besoins de chaleur pour le chauffage sont ainsi déterminés pour l'ensemble du bâtiment. Il n'est pas possible de différencier les affectations individuelles en raison du modèle à zone unique.

S'agissant de l'installation de production et de distribution de chaleur pour le chauffage et l'eau chaude sanitaire, et en ce qui concerne les déperditions liées à la distribution, on prend en compte les affectations pondérées en fonction de la surface pour déterminer les réseaux de distribution (rayon et longueur des tuyaux/conduites, durée d'exploitation).

- Les besoins en eau chaude sont déterminés à partir des données d'utilisation standard figurant dans la SIA 380/1:2016 [1]. La valeur de l'ensemble du bâtiment se compose de la valeur pondérée en fonction de la surface sur l'ensemble des affectations.
- Les équipements d'exploitation électriques, l'éclairage et les installations de ventilation sont saisis par affectation.
- Pour l'étiquette, les valeurs de référence sont déterminées à partir de la somme des valeurs de référence uniques pondérées en fonction de la surface.

Les étiquettes sont ainsi élaborées d'après le bâtiment dans son ensemble et non d'après les affectations uniques.

1.3 Remarques

- Les bases des calculs énergétiques des bâtiments (p. ex. les surfaces de référence telles que la surface de référence énergétique ou les surfaces de l'enveloppe thermique du bâtiment) sont définies dans la norme SIA 380:2022 [2]. La SIA 380 a remplacé la SIA 416/1.
- Les valeurs, les équations et surtout les résultats en kWh/a resp. kWh/(m²a) sont prépondérants. Étant donné que les bases de calcul proviennent toutefois, en partie, de l'année 2009, certaines valeurs resp. équations sont exprimées en MJ/a resp. MJ/(m²a). Celles-ci sont désignées de manière spécifique. La conversion s'effectue comme suit: 1kWh = 3,6 MJ.

Une attention particulière doit être accordée à l'unité utilisée, notamment pour le besoin effectif de chaleur pour le chauffage Q_{H,eff}. Les valeurs sont exprimées en kWh/(m²a) et en MJ/(m²a).

- Arrondis, nombre de positions en chiffres
 - Les surfaces de référence énergétique sont exprimées en chiffres entiers.
 - Les autres surfaces peuvent être exprimées avec un chiffre après la virgule.
 - Les saisies de valeurs U, valeurs g, les facteurs d'ombrage, les proportions de vitre, les valeurs b peuvent être exprimées avec deux chiffres après la virgule.
 - Les résultats concernant le besoin de chaleur pour le chauffage sont arrondis à un chiffre après la virgule.
 - Les résultats concernant l'énergie finale sont affichés en chiffre entier.

2 Besoins de chaleur pour le chauffage

Le besoin de chaleur effectif pour le chauffage (QH,eff, QH,eff,corr) est calculé conformément à la SIA 380/1: 2016 [1]. Il convient à ce sujet de prendre en compte ce qui suit :

- S'il existe une installation de ventilation, on utilise le débit d'air neuf rapporté à la surface, conformément au chap. 4.
- S'il n'y a aucune installation de ventilation, il est possible, sous les données d'utilisation standard, d'adapter le débit d'air neuf rapporté à la surface de chaque affectation à l'étanchéité de l'enveloppe du bâtiment (0,7 1,5 m³/(h m²)). La valeur moyenne de la surface est déterminée pour le calcul des besoins de chaleur pour le chauffage selon l'Éq. 1.
- Dans le cas d'une affectation mixte, les paramètres suivants sont pris en compte proportionnellement à la surface :
 - les données d'utilisation standard (Éq. 1), l'émission de chaleur par les personnes (Éq. 2)
 - les constantes a₀ et T₀ (Éq. 1) pour déterminer le taux d'utilisation η₀

Tel que décrit au chap. 1.2, le calcul de l'affectation mixte se base sur un modèle à zone unique. Le modèle à zone unique a été choisi pour simplifier le calcul, la gestion du programme et l'approvisionnement en chaleur par les différents producteurs de chaleur dans les diverses zones approvisionnées.

Remarque

Cette procédure simplifiée ne correspond pas à celle des programmes SIA 380/1 courants, qui calculent un modèle dit multizone. Dans un tel modèle, l'enveloppe du bâtiment est clairement attribuée à chaque affectation, et, le cas échéant, l'échange thermique est également pris en considération entre les zones. Au vu des diverses procédures, on peut s'attendre à des résultats différents en ce qui concerne les valeurs de projet entre le CECB et les logiciels externes pour le calcul de la SIA 380/1.

Il en va de même pour le calcul de la valeur limite qui est également calculée sur la base du modèle à zone unique dans le CECB (chap. 7.2).

Les données d'utilisation standard pondérées en fonction de la surface pour les affectations mixtes S_{Nutz} se calculent à partir de la somme des valeurs de référence uniques pondérées en fonction de la surface. L'Éq. 1 s'applique aux données d'utilisation standard :

- Température ambiante
- Supplément de régulation pour la température ambiante
- Temps de présence par jour
- Besoin en électricité
- Facteur de réduction pour les besoins en électricité
- Débit d'air neuf thermiquement actif

$$S_{Nutz} = \sum_{n=1}^{N_{Nutz}} S_{Nutz,n} \cdot \frac{A_{E,Nutz,n}}{A_E}$$
 [Unité] Éq. 1

n	[-]	Index courant
N _{Nutz}	[-]	Nombre d'affectations
S _{Nutz,n}	[Unité]	Paramètre des données d'utilisation standard resp. constantes a _o et T _o de l'affectation n
A _{E,Nutz,n}	[m ²]	Surface de référence énergétique de l'affectation n
AE	[m ²]	Surface de référence énergétique totale

L'Éq. 1 peut être utilisée par analogie pour d'autres paramètres destinés à la pondération des surfaces.

En cas d'affectation mixte (modèle à zone unique), l'Éq. 2 s'applique à la totalité des émissions de chaleur par les personnes Q_{I,P} lors du calcul des besoins de chaleur pour le chauffage selon la SIA 380/1:

$$Q_{I,P} = \left(\sum_{n=1}^{N_{Nutz}} Q_{P,std,Nutz,n} \cdot \frac{t_{P,std,Nutz,n}}{A_{P,std,Nutz,n}} \cdot \frac{A_{E,Nutz,n}}{A_E}\right) \cdot \frac{t_c}{1000} \quad [kWh/(m^2a)] \quad \acute{\text{Eq. 2}}$$

n	[-]	Index courant
N _{Nutz}	[-]	Nombre d'affectations
QP,std,Nutz,n	[W/P]	Données d'utilisation standard pour l'émission de chaleur par les personnes selon la SIA 380/1:2016 conformément à l'affectation n
tP,std,Nutz,n	[h/d]	Données d'utilisation standard pour le temps de présence par jour selon la SIA 380/1:2016 conformément à l'affectation n
A _{P,std,Nutz,n}	[m²/P]	Données d'utilisation standard pour les surfaces effectives par personne selon la SIA 380/1:2016 conformément à l'affectation n
tc	[d]	Longueur des étapes de calcul
AE,Nutz,n	[m ²]	Surface de référence énergétique de l'affectation n
AE	[m ²]	Surface de référence énergétique totale

3 Chauffage et eau chaude sanitaire

3.1 Généralités

Pour couvrir les besoins en chauffage et en eau chaude, il est possible de définir jusqu'à cinq producteurs de chaleur différents. Pour l'approvisionnement en chaleur du chauffage et de l'eau chaude, la surface de référence énergétique peut à chaque fois être divisée en un maximum de trois zones. Il est possible de diviser séparément les surfaces des zones approvisionnées pour le chauffage (HE 1, HE 2, HE 3) et l'eau chaude (WW 1, WW 2, WW 3). La répartition des surfaces est indépendante de l'affectation. Pour chaque zone, les besoins doivent être couverts à 100 % par les producteurs de chaleur. Exemple Tab. 1.

Tab. 1 Exemple de distribution des cinq producteurs de chaleur pour le chauffage et l'eau chaude pour chaque zone approvisionnée.

	Chauffage			Eau chaude sanitaire		
Zone approvisionnée	HE 1	HE 2	HE 3	WW 1	WW 2	WW 3
Taux de couverture WE 1	100%	80%	-	50%	-	-
Taux de couverture WE 2	-	20%	20%	-	-	-
Taux de couverture WE 3	-	-	60%	50%	-	-
Taux de couverture WE 4	-	-	20%	-	100%	-
Taux de couverture WE 5	-	-	-	-	-	-
Taux de couverture Zone	100%	100%	100%	100%	100%	-

3.2 Producteur de chaleur

Les paramètres suivants sont déterminants pour chaque producteur de chaleur :

- Type de producteur de chaleur (liste déroulante selon Tab. 12)
- Rendement / coefficient de performance annuel pour le producteur de chaleur, séparé en chauffage et eau chaude (saisie libre)
- Agents énergétiques du producteur de chaleur
- Facteur pour le surdimensionnement du producteur de chaleur
- Températures entrée/sortie de la zone approvisionnée à laquelle le producteur de chaleur est couplé (liste déroulante Tab. 3)
- Type d'approvisionnement de chaleur (liste déroulante Tab. 10)
- Compensation hydraulique pour le chauffage (liste déroulante Tab. 10)
- Type de maintien de la chaleur de l'eau chaude (liste déroulante Tab. 10)
- Emplacement des conduites de distribution horizontales (liste déroulante Tab. 10)
- Épaisseur de l'isolation et conductivité thermique de l'isolation pour les conduites de distribution (saisie libre)
- État de l'isolation des conduites de distribution (liste déroulante Tab.
 10)

- Production d'électricité issue du couplage chaleur-force (saisie libre, chap. 5)
- Taux de couverture du producteur de chaleur pour chaque zone approvisionnée (saisie libre)

Le producteur de chaleur « Poêle à bois comme chauffage d'appoint » est un cas particulier. Les données suivantes sont requises ici :

- Rendement (saisie libre)
- Sélection des agents énergétiques : bûches ou pellets
- Taux de couverture de l'ensemble des besoins de chaleur pour le chauffage, max. 10 % (saisie libre)
- Taux de couverture pour chaque zone approvisionnée (saisie libre)

3.3 Poêle à bois comme chauffage d'appoint

Le taux de couverture des besoins de chaleur pour le chauffage est limité pour les poêles à bois utilisés comme chauffage d'appoint (p. ex. cheminée). Le taux de couverture pour le producteur de chaleur « Poêle à bois comme chauffage d'appoint » ne doit pas dépasser 10 % de l'ensemble des besoins de chaleur pour le chauffage. Les taux de couverture du « Poêle à bois comme chauffage d'appoint » peuvent varier selon les zones approvisionnées. Mais au total, ils ne doivent pas dépasser 10 % de l'ensemble des besoins de chaleur pour le chauffage.

- Un « Poêle à bois comme chauffage d'appoint » peut uniquement être intégré dans une zone approvisionnée par circuit d'eau.
- Si un « Poêle à bois comme chauffage d'appoint » est choisi, un autre producteur de chaleur doit être déclaré comme producteur de chaleur principal.
- Un producteur de chaleur principal ne peut pas être un producteur de chaleur solaire thermique.
- Un producteur de chaleur « Poêle à bois comme chauffage d'appoint » ne possède aucun groupe auxiliaire et ne nécessite donc aucune énergie auxiliaire.
- Le « Poêle à bois comme chauffage d'appoint » ne présente aucune déperdition liée aux conduites de distribution.

3.4 Types d'accumulateurs

Généralités

- Trois types d'accumulateurs peuvent être sélectionnés : accumulateur de chauffage, accumulateur d'eau chaude et accumulateur combiné.
- Chaque accumulateur doit être attribué à minimum un et maximum trois producteurs de chaleur.
- Deux accumulateurs maximums peuvent être attribués à chaque producteur de chaleur.

Les données suivantes sont déterminantes :

- Type d'accumulateur (liste déroulante : accu. de chauffage, d'eau chaude sanitaire ou combiné)
- En cas d'accumulateur combiné : part de chauffage/d'eau chaude sanitaire (saisie libre)
- Capacité de l'accumulateur (saisie libre)
- Attribution de l'accumulateur au producteur de chaleur (saisie libre)
- Emplacement de l'accumulateur (liste déroulante : à l'intérieur/à l'extérieur de l'enveloppe thermique du bâtiment)
- Qualité d'exécution des raccordements de l'accumulateur (liste déroulante : très bonne, bonne, moyenne, mauvaise, Tab. 11)

Charcar.						
Type d'accumulateur	Chauffage		_		Eau chaude sanitaire	
	ACF 1	ACF 2	ACB 1	ACB 2	AEC 1	AEC 2
Prod. chaleur 1	Х				Х	
Prod. chaleur 2		Х			Х	
Prod. chaleur 3					Х	
Prod. chaleur 4						
Prod. chaleur 5						

Tab. 2 Exemple d'attribution de différents types d'accumulateurs à différents producteurs de chaleur.

Accumulateur combiné

Conditions requises pour l'accumulateur combiné :

- Une part du volume des accumulateurs combinés est destinée au chauffage et une autre part à l'eau chaude sanitaire. Volume : saisie libre
- Au moins un des producteurs de chaleur attribués à l'accumulateur combiné doit approvisionner au moins une zone de chauffage.
- Au moins un des producteurs de chaleur attribués à l'accumulateur combiné doit approvisionner une zone d'eau chaude sanitaire.
- Le calcul des déperditions de chaleur liées à la partie du volume de l'accumulateur dédiée au chauffage se fait à l'aide de l'équation pour le calcul des déperditions liées à l'accumulateur pour le chauffage (Éq. 6). Lors du calcul des déperditions de chaleur liées à l'accumulateur pour le chauffage, le volume total de l'accumulateur combiné (chauffage + eau chaude) est pris en compte pour déterminer le volume de l'accumulateur. Ce chiffre est ensuite multiplié par la part du volume de chauffage par rapport au volume total.
- Le calcul des déperditions de chaleur liées à la partie du volume de l'accu. dédiée à l'ECS est effectué à l'aide de l'équation pour le calcul des déperditions de chaleur liées à l'accu. pour l'ECS (Éq. 8). Lors du calcul des déperditions de chaleur liées à l'accu. pour l'ECS, le volume total de l'accumulateur combiné (chauffage + ECS) est pris en compte pour déterminer le volume de l'accumulateur. Ce chiffre est ensuite multiplié par la part du volume d'ECS par rapport au volume total.

3.5 Déperditions de chaleur

Le besoin en énergie finale pour le chauffage et l'eau chaude est calculé en s'appuyant sur la procédure décrite dans la SIA 2031:2009, annexe A [3], SIA 380 [4], SIA 384/3 [5] et SIA 385/2 [6]. Sont prises en considération les déperditions liées à la production, au stockage et à la distribution de la chaleur.

3.5.1 Déperditions de chaleur du producteur de chaleur

Les déperditions du producteur de chaleur doivent être contenues dans les rendements resp. les coefficients de performance annuels du producteur de chaleur saisis.

3.5.2 Déperditions liées à la distribution de la chaleur

Les déperditions liées à la distribution de la chaleur dans les zones approvisionnées en chauffage et en eau chaude sont calculées selon l'Éq. 3 de manière analogue à la SIA 384/3 Annexe C1 [5]. Les déperditions liées aux conduites de distribution horizontales et verticales sont prises en considération de manière séparée.

Déperditions liées aux conduites de distribution horizontales resp. verticales :

$$Q_{y,WEi,dis,ls,z,j} = \frac{\pi}{W_{pipe}} \cdot L \cdot \Delta\theta \cdot \frac{t_{be,dis}}{1000}$$
 [kWh/a] Éq. 3

avec

$$W_{pipe} = \frac{1}{h_i \cdot d_1} + \frac{1}{2 \cdot \lambda_1} \cdot \ln \left(\frac{d_1 + 2 \cdot r_{ws}}{d_1} \right) + \frac{1}{2 \cdot \lambda_2}$$

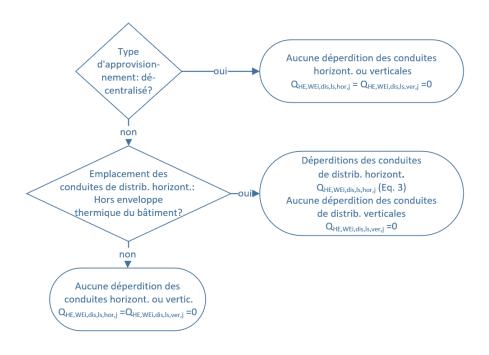
$$\cdot \ln \left(\frac{d_1 + 2 \cdot r_{ws} + 2 \cdot sD}{d_1 + 2 \cdot r_{ws}} \right)$$

$$+ \frac{1}{h_a \cdot (d_1 + 2 \cdot r_{ws} + 2 \cdot sD)}$$
[m K/W] Éq. 4

WEi	[-]	Producteur de chaleur WEi			
y,z,j	[-]	Emplacement prévu pour y : chauffage/eau chaude, z : orientation des conduites de distribution et j : zone approvisionnée			
λ_1, λ_2	[W/(m K)]	Conductivité thermique des conduites de distribution :			
		non isolées : conductivité thermique de la conduite : $\lambda_1 = 50 \text{ W/(m K)}$			
		 isolées : conductivité thermique conformément à la saisie λ₂ (identique pour des conduites horizontales et verticales) 			
		• partiellement isolées : conductivité thermique conformément à la saisie λ_2			
		- conduites horizontales : isolées			
		- conduites verticales : non isolées			

hi	[W/(m ² K)]	Coefficient de conductivité thermique interne (eau de chauffage paroi de la conduite) 2000 W/(m² K) selon SIA 381/3:2013 Tab.13			
ha	[W/(m ² K)]	Coefficient de conductivité thermique des conduites : non isolées: 13 W/(m²·K) isolées: 7,5 W/(m²·K)			
d ₁	[m]	Diamètre interne de la conduite d ₁ = 2 * a avec Rayon interne a de la conduite (rayon interne du tuyau), selon Tab. 5			
rws	[m]	Épaisseur de la paroi de la conduite : r _{ws} = 0.0025 m, adaptation conformément aux épaisseurs typiques de conduites pour les tubes filetés en acier selon EN 10225			
sD	[m]	Epaisseur de l'isolation ; sans isolation, sD=0			
L	[m]	Pour les longueurs horizontales et verticales du réseau de distribution selon Tab. 9 en m/m² multiplié par la surface de référence énergétique de chaque zone approvisionnée.			
Δθ	[K]	Pour le chauffage : Différence de température de la température moyenne du circuit de chauffage θ_{HK} selon Tab. 3 (sans compensation hydraulique ou avec compensation hydraulique inconnue) et Tab. 4 (compensation hydraulique connue) pour l'air ambiant θ_{U} : $\Delta\theta = \theta_{HK} - \theta_{U}$ Pour l'eau chaude :			
		Différence de température de la température de l'eau chaude pour l'air ambiant (θ_{WW} = 60 °C): $\Delta\theta$ = θ_{WW} – θ_{U} Air ambiant θ_{U} pour section de conduite : a l'extérieur de l'enveloppe thermique du bâtiment: 13 °C a l'intérieur de l'enveloppe thermique du bâtiment: 20 °C (les conduites de distribution verticales sont toujours à l'intérieur de l'enveloppe thermique)			
t be,dis	[h]	Durée d'exploitation de la distribution de la chaleur, selon Tab. 6 (chauffage) et Tab. 7 (eau chaude). S'agissant d'une installation de chauffage décentralisée, la durée d'exploitation du système de distribution de chaleur est t _{be,dis,x} = 0 h.			

Déperditions liées à la distribution du chauffage


Les déperditions des conduites horizontales pour le chauffage (Q_{HE,WEi,dis,ls,hor,j}) sont calculées avec Éq. 3 pour chaque producteur de chaleur WE_i et zone approvisionnée j (III. 3), si

- Type de chauffage : « centralisé » et
- Emplacement des conduites de distribution horizontales « à l'extérieur de l'enveloppe thermique du bâtiment »

est admis. Dans tous les autres cas, ce qui suit s'applique pour les déperditions liées aux conduites de distribution horizontales : QHE,WEi,dis,ls,hor,j = 0 kWh/a, étant donné qu'elles sont supposées être entièrement récupérables.

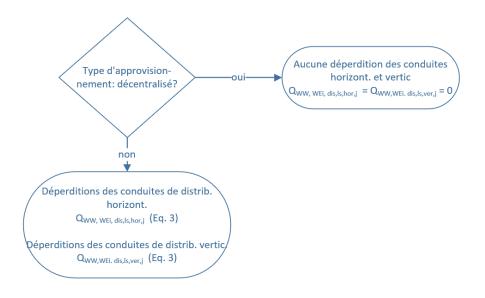
Les déperditions liées aux conduites de distribution verticales de chauffage sont entièrement récupérables et ne sont de ce fait pas calculées.

Les déperditions à l'intérieur de l'enveloppe thermique du bâtiment sont considérées comme étant entièrement récupérables et ne doivent, par conséquent, pas être calculées [2].

III. 3 Diagramme de flux – Déperditions liées à la distribution du chauffage.

Définition

Centralisé : chauffage principal à circuit d'eau, chauffages par étage inclus.


Décentralisé : poêles individuels

Déperditions liées à la distribution de l'eau chaude

L'ensemble des déperditions liées à la distribution de chaleur horizontale et verticale de l'eau chaude sont calculées avec Éq. 5. Les déperditions sont calculées pour chaque producteur de chaleur WE_i et zone approvisionnée j :

$Q_{WW,WEi,dis,ls,j} = Q_{WW,WEi,dis,ls,hor,j} + Q_{WW,WEi,dis,ls,ver,j}$		
équivaut à « 0 », si installation de production d'eau chaude	[kWh/a]	Éq. 5
décentralisée		

WEi	[-]	Producteur de chaleur WE _i
j	[-]	Zone approvisionnée j
hor, ver	[-]	Horizontal, vertical
Qww,wEi,dis,ls,hor,j [kWh/a]		Déperditions liées aux conduites de distribution horizontales de la zone j, calculées selon Éq. 3.
Qww,wEi,dis,ls,ver,j	[kWh/a]	Déperditions liées aux conduites de distribution verticales de la zone j, calculées selon Éq. 3.

III. 4 Diagramme de flux – Déperditions liées aux conduites de distribution de l'eau chaude.

3.5.3 Déperditions de chaleur liées à l'accumulateur

Accumulateur de chauffage

Les déperditions de chaleur d'accumulateurs de chauffage à l'intérieur de l'enveloppe thermique du bâtiment sont thermiquement actives selon la SIA 380:2022 (ch. 4.4.5.8). Elles ne doivent donc pas être calculées ni indiquées.

Les déperditions d'accumulateurs de chauffage à l'extérieur de l'enveloppe thermique du bâtiment sont calculées en s'appuyant sur la SIA 384/3:2013 (ch. 4.8.2.1) et la SIA 385/2:2015 (Annexe B.1.3). Les déperditions de l'accumulateur de chauffage k sont calculées comme suit (Éq. 6) :

$$Q_{HE,STOk,ls} = A_{avg} * U_{H,STOk} * t_{be,dis} * \frac{\Delta \theta}{1000} * f_{H,STOk,wb}$$
 [kWh/a] Éq. 6

avec

$$A_{avg} = 2\pi * \left(\sqrt[3]{\left(\frac{V_{H,STOk}}{1000 * 2\pi * f_{STOk,HD}}\right)} + \frac{d_{STOk,WD}}{2} \right)^2 * \left(1 + 2 * f_{STOk,HD}\right)$$
 [m²] Éq. 7

STOk	[-]	Accumulateur k
f _{H,STOk,wb}	[-]	Facteur pour la qualité d'exécution des raccordements de l'accumulateur. Sélection lors de la saisie selon le Tab. 11
A _{avg}	[m ²]	Surface moyenne de l'isolation thermique de l'accumulateur (valeur moyenne entre la surface intérieure et extérieure) [Remarque : formule pour Aavg selon calcul propre]
U н,ѕток	[W/(m²-K)]	Coefficient de transmission thermique de l'enveloppe de l'accumulateur selon les valeurs limites de l'épaisseur de l'isolation thermique d _{STOK,WD} de l'accumulateur selon 384/1:2009, ch. 5.5.3 pour une conductivité thermique de l'isolation thermique de l'accumulateur de 0,05 W/(m·K)
		 pour une contenance d'accumulateur ≤ 400 litres, U_{H,STOk} = 0,43 W/(m²·K)
		 pour une contenance d'accumulateur > 400 et ≤ 2000 litres, U_{H,STOk} = 0,37 W/(m²·K)
		 pour une contenance d'accumulateur > 2000 litres, U_{H,STOk} = 0,30 W/(m²⋅K)

Δθ	[K]	Différence de température entre la température de l'accumulateur et l'air ambiant θ_U . La température de l'accumulateur correspond à la température moyenne maximale du circuit de chauffage $\theta_{HK,max}$ des zones approvisionnées par le producteur de chaleur attribué plus 5 K. $\Delta\theta = \theta_{HK,max} + 5 \ K - \theta_U$
		θ _{HK,max} selon Tab. 3 ou Tab. 4
		Air ambiant θ _υ pour accumulateur :
		 emplacement à l'extérieur de l'enveloppe thermique du bâtiment : 13 °C emplacement à l'intérieur de l'enveloppe thermique du
		bâtiment : 20 °C
t be,dis	[W/(m K)]	Durée d'exploitation de l'accumulateur en heures par année de manière analogue à la durée d'exploitation du réseau de distribution pour le chauffage en relation avec les besoins de chaleur pour le chauffage selon Tab. 6
V _H ,stok	[1]	Volume de l'accumulateur en litres
fstok,HD	[-]	Facteur du rapport entre la hauteur et le diamètre de l'accumulateur ; valeur standard fstok,HD = 2,5
dsток,wd	[m]	Épaisseur de l'isolation thermique dsto,WD de l'accumulateur selon les valeurs limites de l'épaisseur de l'isolation conformément à la SIA 384/1:2009, ch. 5.5.3 pour une conductivité thermique de l'isolation thermique de l'accumulateur de 0,03 à 0,05 W/(m⋅K) ■ pour une contenance d'accu. ≤ 400 litres, dsto,WD = 0,11 m ■ pour une contenance d'accu. >400 et ≤ 2000 litres, dsto,WD = 0,13 m ■ pour une contenance d'accu. > 2000 litres, dsto,WD = 0,16 m

Remarque

Dans le CECB, l'accumulateur de chauffage est complété avec la qualité des manchons de raccordement de manière analogue à l'accumulateur d'eau chaude, afin de pouvoir également représenter les anciens accumulateurs.

Accumulateur d'eau chaude

Les déperditions d'accumulateurs d'eau chaude sont calculées en s'appuyant sur la SIA 385/2:2015, B.1.3. Les déperditions de l'accumulateur d'eau chaude k sont calculées comme suit :

$$Q_{WW,STOk,ls} = \left(c_1 * \sqrt{\frac{V_{W,STOk}}{V_0}} + c_2 * (n_{cp} - 2)\right) * t_{be,dis} * \frac{\Delta \theta}{\theta_{W,sto}} * f_{w,STOk,wb}$$

$$[kWh/a] \quad \text{Eq. 8}$$

STOk	[-]	Accumulateur k
C1	[kWh/d]	Coefficient avec valeur c ₁ = 0,11 kWh par jour
V _{W,STOk}	[1]	Volume de l'accumulateur en litres
V ₀	[1]	Constantes avec valeurs V ₀ = 1 litre
C2	[kWh/d]	Coefficient avec valeur c ₂ = 0,10 kWh par jour
Пср	[Pce]	Nombre de raccords conducteurs d'eau (peu importe qu'ils soient conducteurs d'eau de manière permanente ou pas). Valeur standard du nombre de manchons = 2. Deux manchons supplémentaires sont pris en compte
		pour chaque producteur de chaleur attribué. Exception : aucun manchon supplémentaire n'est pris en compte dans le cas de chauffage électrique central à accumulation, de chauffage électrique direct ou de chauffe-eau électrique.
t _{be,dis}	[d/a]	Durée d'exploitation de l'accumulateur d'eau chaude avec une valeur standard t _{be,dis} = 365 jours par an
Δθ	[K]	Différence de température entre la température de l'eau chaude et l'air ambiant (θ_{WW} = 60 °C): $\Delta\theta$ = θ_{WW} – θ_{U}
		Air ambiant θ_U pour sections de conduite :
		 à l'extérieur de l'enveloppe thermique du bâtiment: 13 °C
		à l'intérieur de l'enveloppe thermique du bâtiment: 20 °C
θw,sток	[K]	Coefficient avec valeur θ _{w,STOk} =45 K
fw,stok,wb	[d/a]	Facteur pour la qualité d'exécution des raccordements de l'accumulateur. Sélection lors de la saisie selon le Tab. 11

Remarque

Selon la SIA 385/2, l'Éq. 8 s'applique pour un volume d'accumulateur > 2000 l. Dans la mesure où il n'y a pas d'indications pour les accumulateurs de plus petite taille, cette formule s'applique également aux accumulateurs de petite taille dans le CECB.

3.6 Attribution des déperditions thermiques aux producteurs de chaleur

Pour le chauffage et l'eau chaude sanitaire, les déperditions d'un accumulateur sont réparties de manière proportionnelle entre les producteurs de chaleur auxquels l'accumulateur est attribué. La répartition s'effectue proportionnellement à la part des différents producteurs de chaleur dans l'approvisionnement total et comprend aussi bien l'énergie utile que les déperditions liées à la distribution.

Attribution des déperditions liées à l'accumulateur de chauffage aux différents producteurs de chaleur

Facteur pour la part des déperditions de l'accumulateur de chauffage k pour le producteur de chaleur :

i, j, k	[-]	Index courant
Nwe	[-]	Nombre de producteurs de chaleur
N _{Ber}	[-]	Nombre de zones approvisionnées
N _{STO}	[-]	Nombre d'accumulateurs
fH,WEi,STOk	[-]	Facteur pour l'attribution de l'accumulateur de chauffage k au producteur de chaleur WEi.
		 Si l'accumulateur est attribué au producteur de chaleur, alors f_{H,WEi,STOk} =1.
		 Si l'accumulateur n'est pas attribué au producteur de chaleur, alors f_{H,WEi,STOk} = 0.
Q _{H,eff}	[kWh/(m² a)]	Besoins de chaleur eff. pour le chauffage (identiques pour toutes les zones)
A _{E,Berj}	[m ²]	Surfaces de la zone approvisionnée j
QHE,WEi,dis,ls,hor,j	[kWh/a]	Déperditions liées aux conduites de distribution horizontales du producteur de chaleur WE _i pour la zone approvisionnée j
DG _{Ei,j}	[-]	Taux de couverture de la zone approvisionnée j par le producteur de chaleur WE _i
Compteur		Besoins de chaleur plus les déperditions liées à la distribution du chauffage pour toutes les zones j approvisionnées par le producteur de chaleur WEi, multipliés par le facteur pour l'attribution de l'accumulateur de chauffage k au producteur de chaleur WEi

Dénominateur	La somme des besoins de chaleur plus les déperditions liées à la distribution du chauffage de tous les producteurs de chaleur WE _i et des zones
	approvisionnées j, multipliée par le facteur correspondant pour l'attribution de l'accumulateur de chauffage k au producteur de chaleur WE;

Déperditions de chaleur liées à l'accumulateur de chauffage par producteur de chaleur

Pour le producteur de chaleur WE_i, la somme des déperditions de chaleur de tous les accumulateurs de chauffage se calcule comme suit :

$$Q_{HE,WEi,STO,ls} = \sum_{k=1}^{N_{STO}} (Q_{HE,STOk,ls} \cdot f_{H,WEi,STOk,ls})$$
 [kWh/a] Éq. 10

k	[-]	Index courant
N _{STO}	[-]	Nombre d'accumulateurs
QHE,STOk,Is	[kWh/a]	Déperditions de l'accumulateur de chauffage k (Éq. 6)
fhe,wei,stok,ls	[-]	Facteur pour la part des déperditions de l'accumulateur de chauffage k pour le producteur de chaleur i

Remarque

Les déperditions d'accumulateurs de chauffage à l'intérieur de l'enveloppe thermique du bâtiment sont thermiquement actives. Elles ne sont donc pas calculées ni indiquées.

Attribution des déperditions liées à l'accumulateur d'eau chaude aux différents producteurs de chaleur

Facteur pour la part des déperditions de l'accumulateur d'eau chaude k pour le producteur de chaleur WE:

$$f_{WW,WEi,STOk,ls} = \frac{\sum_{j=1}^{N_{Ber}} \left(\left(\left(Q_{W,ref} + Q_{WW,Wasch} + Q_{WW,Sp\"{u}l} \right) \cdot A_{E,Berj} + Q_{WW,WEi,dis,ls,j} \right) \cdot DG_{WEi,j} \right) \cdot f_{WW,WEi,STOk}}{\sum_{i=1}^{N_{WE}} \left(\sum_{j=1}^{N_{Ber}} \left(\left(\left(Q_{W,ref} + Q_{WW,Wasch} + Q_{WW,Sp\~{u}l} \right) \cdot A_{E,Berj} + Q_{WW,WEi,dis,ls,j} \right) \cdot DG_{WEi,j} \right) \cdot f_{WW,WEi,STOk} \right) }$$
 si un accumulateur n'est pas attribué à un WEi, alors fww,wei,stok,ls = 0

i, j, k	[-]	Index courant
Nwe	[-]	Nombre de producteurs de chaleur
N _{Ber}	[-]	Nombre de zones approvisionnées
Nsto	[-]	Nombre d'accumulateurs
fww,wei,stok	[-]	Facteur pour l'attribution de l'accumulateur d'eau chaude k au producteur de chaleur i. Si l'accumulateur est attribué au producteur de chaleur, le facteur est alors de 1. Si l'accumulateur n'est pas attribué au producteur de chaleur, alors le facteur est de 0.
Qw,ref	[kWh/(m² a)]	Besoins en énergie utile pour l'eau chaude selon la SIA 380/1 (Tab. 40) resp. pour les affectations mixtes, calculés d'après les valeurs pondérées en fonction de la surface (chap. 1.2).
Qww_wasch	[kWh/(m² a)]	Besoins en énergie utile supplémentaire pour l'eau chaude par le biais de lave-linge avec raccordement à l'eau chaude, Éq. 43
Qww_spül	[kWh/(m² a)]	Besoins en énergie utile supplémentaire pour l'eau chaude par le biais de lave-vaisselles avec raccordement à l'eau chaude, Éq. 42
A _{E,Berj}	[m ²]	Proportion des surfaces de la zone approvisionnée concernée
Qww,wEi,dis,ls,j	[kWh/a]	Déperditions liées aux conduites de distribution d'eau chaude pour le producteur de chaleur WE _i dans la zone approvisionnée j, Éq. 5.
$DG_{Ei,j}$	[-]	Taux de couverture du producteur de chaleur WE _i dans la zone approvisionnée j
Compteur		Besoins de chaleur pour l'eau chaude plus les déperditions liées à la distribution d'eau chaude pour toutes les zones j approvisionnées par le producteur de chaleur i, multipliés par le facteur pour l'attribution de l'accumulateur d'eau chaude k au producteur de chaleur i
Dénominateur		La somme des besoins de chaleur pour l'eau chaude plus les déperditions liées à la distribution d'eau chaude de tous les producteurs de chaleur et zones, multipliée par le facteur correspondant pour l'attribution de l'accumulateur d'eau chaude au producteur de chaleur

Déperditions de chaleur liées à l'accumulateur d'eau chaude sanitaire par producteur de chaleur

Pour le producteur de chaleur WE_i, la somme des déperditions thermiques de tous les accumulateurs d'eau chaude se calcule comme suit :

$$Q_{WW,WEi,STO,ls} = \sum_{k=1}^{N_{STO}} (Q_{WW,STOk,ls} \cdot f_{WW,WEi,STOk,ls})$$
 [kWh/a] Éq. 12

k	[-]	Index courant
Nsto	[-]	Nombre d'accumulateurs
Qww,stok,ls	[kWh/a]	Déperditions de l'accumulateur d'eau chaude k, Éq. 8
fww,wei,stok,ls	[-]	Facteur pour la part des déperditions de l'accumulateur d'eau chaude k pour le producteur de chaleur WE _i

3.7 Déperditions récupérées pour le chauffage

Les déperditions liées à la distribution et au stockage d'eau chaude à l'intérieur de l'enveloppe thermique du bâtiment sont parfois considérées comme thermiquement actives (déperditions récupérables). Pour le calcul, la somme des déperditions récupérables liées au stockage et à la distribution d'eau chaude de toutes les zones est répartie de manière proportionnelle entre tous les producteurs de chaleur pour le chauffage. La répartition entre les producteurs de chaleur pour le chauffage est effectuée sur la base de l'énergie utile pour le chauffage plus les déperditions liées à la distribution du chauffage du producteur de chaleur correspondant, en rapport avec la somme de l'énergie utile pour le chauffage plus les déperditions liées à la distribution du chauffage de tous les producteurs de chaleur.

Calcul de la somme des déperditions récupérables pour l'eau chaude Qww,rück,ls:

$$Q_{WW,r\"{u}ck,ls} = \sum_{i=1}^{N_{WE}} \left(\sum_{j=1}^{N_{Ber}} \left(Q_{WW,WEi,dis,ls,ver,j} + Q_{WW,WEi,dis,ls,hor,j} \cdot f_{WW,dis,hor,ls,j} + Q_{Heizband,WEi,j} \right) \right.$$

$$\cdot DG_{WEi,j} + \sum_{k=1}^{N_{STO}} \left(Q_{WW,STOk,ls} \cdot f_{WW,STOk,ls} \right)$$

$$\left[kWh/a \right] \quad \text{Éq. 13}$$

avec les déperditions récupérables de la bande chauffante pour chaque producteur de chaleur WE_i et zone j :

$$Q_{Heizband,WEi,j} = \frac{2}{3} \cdot (Q_{WW,WEi,dis,ls,ver,j} + Q_{WW,WEi,dis,ls,hor,j} \cdot f_{WW,dis,hor,ls,j}) \cdot f_{HB} \qquad [kWh/a] \quad \acute{Eq}. 14$$

r 1	Index equipme		
[-]	Index courant		
[-]	Nombre de producteurs de chaleur		
[-]	Nombre de zones approvisionnées		
[-]	Nombre d'accumulateurs		
[kWh/a]	Déperditions liées aux conduites de distribution horizontales de la zone j, calculées selon Éq. 3.		
[kWh/a]	Déperditions liées aux conduites de distribution verticales de la zone j, calculées selon Éq. 3.		
[-]	Facteur pour l'emplacement des conduites de distribution horizontales d'eau chaude dans la zone j : à l'extérieur de l'enveloppe thermique du bâtiment = 0		
	à l'intérieur de l'enveloppe thermique du bâtiment = 1		
[-]	Taux de couverture du producteur de chaleur WE; dans la zone approvisionnée j		
[kWh/a]	Déperditions de l'accumulateur d'eau chaude k, Éq. 8		
[-]	Facteur pour l'emplacement de l'accumulateur d'eau chaude k:		
	à l'extérieur de l'enveloppe thermique du bâtiment = 0		
	à l'intérieur de l'enveloppe thermique du bâtiment = 1		
[-]	Facteur bande chauffante:		
	• oui: f _{HB} = 1,		
	• non: f _{HB} = 0		
	[-] [kWh/a] [kWh/a] [-] [-]		

Calcul du facteur pour la répartition des déperditions récupérables entre les producteurs de chaleur WE:

i, j, k	[-]	Index courant
N _{WE}	[-]	Nombre de producteurs de chaleur
N _{Ber}	[-]	Nombre de zones approvisionnées
Q _{H,eff}	[kWh/(m² a)]	Besoins de chaleur eff. pour le chauffage (identiques pour toutes les zones)
A _{E,Berj}	[m ²]	Surfaces de la zone approvisionnée j
QHE,WEi,dis,ls,hor,j	[kWh/a]	Déperditions liées aux conduites de distrib. hor. du prod. de chaleur WE _i pour la zone approvisionnée j

DG _{Ei,j}	[-]	Taux de couverture de la zone approvisionnée j par le producteur de chaleur WEi
Compteur		Besoins de chaleur plus les déperditions liées à la distribution du chauffage pour toutes les zones approvisionnées j par le producteur de chaleur i
Dénominateur		La somme des besoins de chaleur plus les déperditions liées à la distribution du chauffage de tous les producteurs de chaleur et zones

Calcul des déperditions d'eau chaude récupérables par producteur de chaleur:

$Q_{80\%,WW,WEi,r\ddot{\mathbf{u}}ck,ls} = Q_{WW,r\ddot{\mathbf{u}}ck,ls} \cdot f_{WW,r\ddot{\mathbf{u}}ck,ls,WEi} \cdot 0.8 \cdot \eta_g$	[kWh/a]	Éq. 16	
--	---------	--------	--

Q _{WW,rück,ls}	[kWh/a]	Somme des déperditions d'eau chaude récupérables
f _{WW,rück,ls,WEi}	[-]	Facteur pour la répartition des déperditions récupérables sur le producteur de chaleur i
ηg	[-]	Fraction utile conformément à la SIA 380/1:2016 tenant compte du modèle à zone unique

3.8 Énergie finale

L'énergie finale pour le chauffage et l'eau chaude est calculée séparément pour chaque producteur de chaleur, afin de la prendre en compte en fonction de ses agents énergétiques au niveau de l'efficacité globale dans l'étiquette.

Pour chaque producteur de chaleur (i = 1 ... N_{WE}), l'énergie finale est composée de la somme des trois zones approvisionnées tout au plus (j = 1 ... N_{Ber}), pour le chauffage et l'eau chaude à chaque fois.

Chauffage

Les besoins en énergie finale Chauffage E_{HE,WEi} par producteur de chaleur sont calculés sur la base de la SIA 2031:2009 [3] comme suit:

$$E_{HE,WEi} = \sum_{j=1}^{N_{Ber}} \left(\frac{Q_{H,eff} \cdot A_{E,Berj} + Q_{HE,WEi,dis,ls,hor,j}}{\eta_{HE,WEi} - 0.09 (Dim_{WEi} - 1)} \right) \cdot DG_{WEi,j} + \frac{Q_{HE,WEi,STO,ls} - Q_{80\%,WW,WEi,ls}}{\eta_{HE,WEi} - 0.09 (Dim_{WEi} - 1)} \right) \cdot DG_{WEi,j}$$

j	[-]	Index courant
N _{Ber}	[-]	Nombre de zones approvisionnées
Q _{H,eff}	[kWh/(m² a)]	Besoins de chaleur eff. pour le chauffage (identique pour toutes les zones)
A _{E,Berj}	[m ²]	Surfaces de la zone approvisionnée j

QHE,WEi, dis,ls,hor,j	[kWh/a]	Déperditions liées aux conduites de distribution horizontales du producteur de chaleur WE _i pour la zone approvisionnée j
Q _{80%} ,ww,wEi,dis,ls	[kWh/a]	Déperditions liées à la distribution d'eau chaude sanitaire thermiquement actives et imputables pour le chauffage, Éq. 16
QHE,WEi,STO,Is	[kWh/a]	Déperditions de tous les accumulateurs de chauffages 1 à n par producteur de chaleur WE _i , Éq. 10
η HE,WEi	[-]	Rendement annuel du producteur de chaleur WE _i (base HI)
Dim _{WEi}	[-]	Facteur du surdimensionnement du producteur de chaleur WE _i
DG _{Ei,j}	[-]	Taux de couverture de la zone approvisionnée j par le producteur de chaleur WE _i

Eau chaude sanitaire

Les besoins en énergie finale pour l'eau chaude Eww,wEi par producteur de chaleur sont calculés sur la base de la SIA 2031:2009 [3] comme suit:

$$E_{WW,WEi} = \sum_{j=1}^{N_{Ber}} \left(\frac{\left(Q_{W,ref} + Q_{WW_{Wasch}} + Q_{WW_{Spül}} \right) \cdot A_{E,Berj} + Q_{WW,WEi,sto,ls} + }{\eta_{WW,WEi}} \cdot DG_{WEi,j} \right) + \frac{Q_{WW,WEi,sto,ls}}{\eta_{WW,WEi}}$$

$$\left[kWh/a \right] \qquad \text{Éq. 18}$$

j	[-]	Index courant
N _{Ber} ,	[-]	Nombre de zones approvisionnées
η ww,wei	[-]	Rendement annuel du producteur de chaleur (base HI)
Qw,ref	[kWh/(m² a)]	Besoins en énergie utile pour l'eau chaude selon la SIA 380/1 (Tab. 40) resp. pour les affectations mixtes, calculés d'après des valeurs pondérées en fonction de la surface (chap. 1.2).
Q _{ww_mach-laver}	[kWh/(m² a)]	Besoins en énergie utile supplémentaire pour l'eau chaude par le biais de lave-linge avec raccordement à l'eau chaude, Éq. 43
Qww_sèche-linge	[kWh/(m² a)]	Besoins en énergie utile supplémentaire pour l'eau chaude par le biais de lave-vaisselles avec raccordement à l'eau chaude, Éq. 42
AE,Berj	[m ²]	Proportion des surfaces de la zone approvisionnée concernée
Qww,wEi,sto,ls	[kWh/a]	Déperditions liées à l'accumulateur pour l'eau chaude pour le producteur de chaleur WE _i , Éq. 12
Qww,wEi,dis,ls,j	[kWh/a]	Déperditions des conduites de distribution pour l'eau chaude pour le producteur de chaleur WE _i dans la zone approvisionnée j, Éq. 5
DG _{Ei,j}	[-]	Taux de couverture du producteur de chaleur WEi dans la zone approvisionnée j

3.9 Énergie auxiliaire

Chauffage

Pour chaque producteur de chaleur (i = 1 ... N_{WE}), l'énergie auxiliaire est calculée par zone approvisionnée (j = 1 ... N_{Ber}) (Éq. 19, attention à l'unité) en se basant sur la SIA 380/4:2006 [7].

$$\begin{split} E_{HE,WEi,hilfs} &= \\ \sum_{j=1}^{N_{Ber}} \{ [(0.0688 \cdot A_{E,Berj}^{-0.394} \cdot Q_{H,eff} + 2.86 \cdot A_{E,Berj}^{-0.37}) \cdot f_{WEi,ae} \cdot f_{WEi,af} \\ &+ (0.0007 \cdot Q_{H,eff} + 225 \cdot A_{E,Berj}^{-0.73})] \cdot f_{WEi,au} \\ &+ (0.0012 \cdot Q_{H,eff} + 82 \cdot A_{E,Berj}^{-0.73})] \cdot A_{E,Berj} \cdot DG_{WEi} \, \} \end{split}$$
 Équivaut à « 0 » si producteur de chaleur décentralisé équivaut à « 0 » si producteur de chaleur « poêle à bois comme chauffage d'appoint »

j	[-]	Index courant
N _{Ber}	[-]	Nombre de zones approvisionnées
A _{E,Berj}	[m ²]	Surfaces de la zone approvisionnée concernée j
Q _{H,eff}	[MJ/(m² a)]	Besoins de chaleur eff. pour le chauffage (identique pour toutes les zones, attention à l'unité)
f _{WEi,au}	[-]	Pompe de circulation selon Tab. 12
f _{WEi,af}	[-]	Chaudière selon Tab. 12
f _{WEi,ae}	[-]	Groupe auxiliaire selon Tab. 12
fwEi,ak	[-]	Si producteur de chaleur uniquement pour le chauffage (H) ou uniquement pour l'eau chaude (W): fwEi,ak = 1, sinon fwEi,ak = 0,65
DGwei	[-]	Taux de couverture du producteur de chaleur WEi dans une zone approvisionnée

Les seules énergies auxiliaires du producteur de chaleur Chauffage sont finalement résumées :

$E_{HE,hilfs} = \sum_{i=1}^{N_{WE}} \frac{E_{HE,WEi,hilfs}}{3.6}$	[kWh/a]	Éq. 20
---	---------	--------

i	[-]	Index courant
Nwe	[-]	Nombre de producteurs de chaleur
E _{HE,WEi,hilfs}	[MJ/a]	Énergie auxiliaire pour les différents producteurs de chaleur WE _i

Eau chaude sanitaire

L'énergie auxiliaire globale pour le maintien de la chaleur de l'eau chaude se calcule d'après l'Éq. 21; de même, pour chaque producteur de chaleur ($i = 1 \dots N_{WE}$), l'énergie auxiliaire par zone approvisionnée est calculée ($j = 1 \dots N_{Ber}$) en s'appuyant sur la SIA 380/4:2006 [7].

Énergie auxiliaire pour l'eau chaude (attention à l'unité)

$$\begin{split} E_{WW,WEi,hilfs} = \\ \sum_{N_{Ber}} & \{ [(0.0688 \cdot \ A_{E,Berj}^{-0.394} \cdot Q_{H,eff} + 2.86 \cdot \ A_{E,Berj}^{-0.37}) \cdot f_{WEi,ae} \\ & \cdot f_{WEi,af} \\ & + (0.0007 \cdot Q_{H,eff} + 225 \cdot \ A_{E,Berj}^{-0.9}) \cdot f_{WEi,au} + \\ & + \frac{E_{w,a,j}}{A_{E,Berj}} | \cdot \ A_{E,Berj} \cdot \ DG_{WEi} \ \} \\ & \text{\'equivaut \`a `` 0 "'s i producteur de chaleur \'ecentralis\'e} \\ & \text{\'equivaut \`a `` 0 "'s i producteur de chaleur `` poêle \`a bois comme chauffage d'appoint "} \end{split}$$

j	[-]	Index courant	
N _{Ber}	[-]	Nombre de zones approvisionnées	
A _{E,Berj}	[m ²]	Surfaces de la zone approvisionnée concernée	
Q _{H,eff}	[MJ/(m² a)]	Besoins de chaleur eff. pour le chauffage (identique pour toutes les zones, attention à l'unité)	
f WEi,au	[-]	Pompe de circulation selon Tab. 12	
f _{WE i,af}	[-]	Chaudière selon Tab. 12	
fwE i,ae	[-]	Groupe auxiliaire selon Tab. 12	
fwe i,ak	[-]	Si le producteur de chaleur approvisionne uniquement le chauffage (H) ou uniquement l'eau chaude (W): 1, sinon 0,65	
E _{w,a,j}	[MJ/a]	Courant auxiliaire pour les pompes dans la zone approvisionnée (attention à l'unité): Pompe de circulation / circulateur: E _{w,a,j} = E _{w,az,j} (Éq. 22) Bande chauffante: E _{w,a,j} = E _{w,ah,j} (Éq. 23) Aucun maintien de la chaleur: E _{w,a,j} = 0 (Éq. 22)	
DG _{WEi}	[-]	Taux de couverture du producteur de chaleur dans une zone approvisionnée	

Les besoins en électricité pour le maintien de la chaleur de l'eau chaude via un système de circulation sont calculés en s'appuyant sur la SIA 385/2:2015 (Annexe C.1) [6]. Le calcul s'effectue séparément pour chaque zone approvisionnée.

Pompe de circulation / circulateur (attention à l'unité)

$E_{w,az,j} = (8 + 0.2 \cdot L_{circ} \cdot A_E) \cdot \frac{t_{el,dis}}{1000} \cdot 3.6$	[MJ/a]	Éq. 22
---	--------	--------

Lcirc	[m/m ²]	Longueur moyenne des conduites de distribution de la chaleur selon Tab. 9	
AE	[m²]	Surface de référence énergétique totale	
tel,dis	h/a	Durée d'exploitation du réseau de distribution pour l'énergie auxiliaire (Tab. 8)	

Les besoins en électricité pour le maintien de la chaleur de l'eau chaude avec bande chauffante sont calculés selon la SIA 385/2:2015 (Annexe C.2) [6]. Bande chauffante (attention à l'unité)

$$E_{w,ah,j} = \frac{2}{3} \cdot \frac{\mathbf{Q}_{WW,WEi,dis,ls,j}^*}{2.6} \cdot 3.6$$
 [MJ/a] Éq. 23

Q*ww,wei,dis,ls,j	[kWh/a]	Déperditions liées aux conduites de distribution d'eau chaude pour le producteur de chaleur WE _i dans la zone approvisionnée j, Éq. 5	
		Calculé avec t _{el,dis} au lieu de t _{be, dis}	
t _{el,dis}	h/a	Durée d'exploitation du réseau de distribution pour l'énergie auxiliaire (Tab. 8)	

Énergie auxiliaire totale pour l'eau chaude :

$E_{WW,hilfs} = \sum_{i=1}^{N_{WE}} \frac{E_{WW,WEi,hilfs}}{3.6}$	[kWh/a]	Éq. 24
$\sum_{i=1}^{BWW,nutrs} \sum_{i=1}^{SWW} 3.6$	į .	1

i	[-]	Index courant
Nwe	[-]	Nombre de producteurs de chaleur
Eww,wei,hilfs	[MJ/a]	Énergie auxiliaire pour les différents producteurs de chaleur i dans les zones approvisionnées j (attention à l'unité)

3.10 Tableaux de référence Chauffage et Eau chaude sanitaire

Les désignations HWWxx correspondent aux désignations utilisées dans le Manuel CECB V5.1 destiné aux experts [8].

Tab. 3 HWW04 Température moyenne du circuit de chauffage en relation avec les températures entrée/sortie et le surdimensionnement du producteur de chaleur, sans compensation hydraulique ou avec compensation hydraulique inconnue.

Dimensionnement	Unité	Surdimensionnement				
entrée/sortie		1	1,2	1,5	2	3
90/70	[°C]	66	63	59	56	53
70/55	[°C]	53	50	48	45	44
55/40	[°C]	43	41	40	38	37
50/38	[°C]	40	38	37	36	34
45/35	[°C]	36	35	34	33	31
40/32	[°C]	<mark>33</mark>	32	31	30	29
35/28	[°C]	30	29	28	27	27
30/25	[°C]	26	26	25	25	24

Tab. 4 **HWW05** Température moyenne du circuit de chauffage en relation avec les températures sortie/entrée et le surdimensionnement du producteur de chaleur, avec compensation hydraulique (connue).

Dimensionnement	Unité		Surdime	ensionn	ement	
entrée/sortie		1	1,2	1,5	2	3
90/70	[°C]	54	50	45	40	37
70/55	[°C]	44	41	38	34	32
55/40	[°C]	37	35	32	30	28
50/38	[°C]	<mark>35</mark>	<mark>33</mark>	<mark>30</mark>	<mark>29</mark>	<mark>27</mark>
45/35	[°C]	32	30	28	27	25
40/32	[°C]	<mark>30</mark>	<mark>28</mark>	<mark>27</mark>	<mark>26</mark>	<mark>24</mark>
35/28	[°C]	27	26	25	24	23
30/25	[°C]	24	24	23	23	22

Tab. 5	HWW07 Rayon interne moyen du circuit de distribution pour chauffage et eau chaude
	en relation avec la catégorie du bâtiment.

Rayon interne	Unité	Habitat coll., hôtel	Habitat ind.	Administrati on, école, commerce, restaurant
Chauffage rayon interne vertical	[m]	0,0075	0,0065	0,0075
Chauffage rayon interne horizontal	[m]	0,0135	0,0065	0,0155
ECS rayon interne vertical	[m]	0,0085	0,0070	0,0085
ECS rayon interne horizontal	[m]	0,0085	0,0070	0,0085

Tab. 6 **HWW08** Durée d'exploitation annuelle t_{be,dis} du réseau de distribution du chauffage en relation avec les besoins de chaleur pour le chauffage « centralisé » (« décentralisé »: durée d'exploitation = 0 h/a).

Durée d'exploitation	Unité	QH,eff [MJ/(m2 a)] (attention à l'unité)		
		< 150	150 ≤ QH,eff < 300	≥ 300
Durée d'exploitation réseau de chauffage	[h/a]	4400	5400	6400

Tab. 7 **HWW09** Durée d'exploitation annuelle t_{be,dis} du réseau de distribution de l'eau chaude sanitaire en relation avec le maintien de la chaleur pour le calcul des pertes de chaleur.

Durée d'exploitation Eau chaude sanitaire	Unité	Circula- tion	Bande chauffante	Aucune
Habitat coll., hôtel	[h/a]	8760	300	300
Habitat ind.	[h/a]	6570	300	300
Administration, école, commerce, restaurant	[h/a]	3000	300	300

Tab. 8 Durée d'exploitation annuelle t_{el.dis} du réseau de distribution de l'eau chaude sanitaire en relation avec le maintien de la chaleur pour le calcul de l'énergie électrique auxiliaire.

Durée d'exploitation Eau chaude sanitaire	Unité	Circula- tion	Bande chauffante	Aucune
Habitat coll., hôtel	[h/a]	8760	<mark>8760</mark>	300
Habitat ind.	[h/a]	<mark>6570</mark>	<mark>6570</mark>	<mark>300</mark>
Administration, école,	[h/a]	3000	3000	<mark>300</mark>
commerce, restaurant				

Tab. 9 **HWW10** Longueur moyenne des conduites de distribution de chaleur pour chauffage et eau chaude en relation avec la catégorie du bâtiment. Les longueurs moyennes sont basées sur [9].

Longueur des conduites de distribution de la chaleur	Unité	Habitat ind.	Habitat coll., admin., école, commerce, restaurant, hôtel
Chauffage longueur, vertical	[m/m ²]	0,45	0,41
Chauffage longueur, horizontal	[m/m ²]	0,24	0,10
Chauffage longueur, vertical	[m/m ²]	0,13	0,11
Eau chaude longueur, horizontal	[m/m ²]	0,07	0,03

Tab. 10 Listes déroulantes pour différents paramètres.

Type d'ap- provision- nement en chaleur	Compensa- tion hydrau- lique	Type d'accu- mulateur	Maintien de la cha- leur Eau chaude	Emplace- ment con- duites de distribution horizont.	État de l'iso- lation des conduites de distribution
Centralisé	Oui	Aucun	Aucun	À l'extérieur de l'enveloppe thermique du bâtiment	Isolées
Décentralisé	Non	Chauffage	Circulation	À l'intérieur de l'enveloppe thermique du bâtiment	Non isolées
	Partielle	Eau chaude sanitaire	Bande chauffante	-	Partielle
-	-	Accumulateur combiné	-	-	-

Exemple de lecture :

Il est possible de choisir ce qui suit concernant le maintien de la chaleur pour l'eau chaude : aucun système, système de circulation ou bande chauffante.

Tab. 11 Facteur pour la qualité d'exécution des raccordements de l'accumulateur.

Qualité d'exécution des raccordements de l'accumulateur	Unité	fw,sток,wb	Explications
Très bonne	[-]	1	Les raccordements ont des siphons thermiques et sont isolés thermiquement, qualité d'exécution supérieure à la moyenne

Bonne	[-]	1.2	Les raccordements ont des siphons thermiques et sont isolés thermiquement, bonne qualité d'exécution
Moyenne	[-]	2	Les raccordements ont des siphons thermiques <u>ou</u> sont isolés thermiquement
Mauvaise	[-]	3	Les raccordements n'ont pas de siphons thermiques <u>et</u> ne sont pas isolés thermiquement

Tab. 12 Facteurs pour le calcul de l'énergie auxiliaire en relation avec le producteur de chaleur. Remarque : pour les pompes de circulation des groupes de chauffage, l'énergie auxiliaire provient de la formule Energie auxiliaire chauffage.

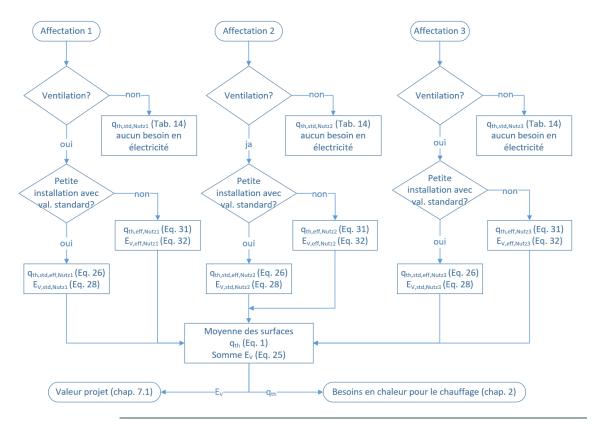
Producteur de chaleur WE	Facteur pompe de circulation*	Facteur chaudière	Facteur groupe auxiliaire
	f _{WE,au}	f _{WE,af}	f _{WE,ae}
Chaudière à mazout	1	1	1
Chaudière au mazout, à condensation	1	1 1	
Chaudière à gaz	1	1	0,5
Chaudière à gaz, à condensation	1	1	0,5
Chaudière à bois automatique	1	1	3
Chaudière à bois, alimentée manuellement	1	0	0
Poêle à bois comme chauffage d'appoint	0	0	0
Chaudière à pellets automatique	1	1	2
Chaudière à pellets, alimentée manuellement	1	1	0.5
Chaleur à distance (issue d'une UIOM, STEP, industrie)	1	0	0
Approvisionnement chaleur de quartier avec CCF	1	1	1
Mini CCF	1	1	1
Chauffage électrique central à accumulation	1	0	0
Chauffage électrique direct	0	0	0
Chauffe-eau électrique	0	0	0
Pompe à chaleur air extérieur	0	0	0
Pompe à chaleur géothermique	0	0	0
Pompe à chaleur eaux usées	0	0	0
Pompe à chaleur eaux souterraines, direct	0	0	0
Pompe à chaleur eaux souterraines, indirect	0	0	0
Pompe à chaleur échangeur air-sol	0	0	0
Appareil de ventilation avec PAC extraction d'air/air pulsé, avec RC	0	0	0
Appareil de ventilation avec PAC extraction d'air/air pulsé, sans RC	0	0	0
Appareil de ventilation avec PAC extraction d'air (pas d'air pulsé)	0	0	0
PAC compacte avec extraction d'air/air pulsé et RC	0	0	0
PAC compacte avec extraction d'air/air pulsé sans RC	0	0	0
Energie solaire thermique	1	0	0

^{*}En ce qui concerne les PAC, le courant pour la pompe de circulation et le groupe auxiliaire est contenu dans le COP.

Normalisation du CECB Ventilation

4 Ventilation

4.1 Généralités


Pour les mais. ind. / imm. coll. jusqu'à 2000 m² et pour les administrations/écoles jusqu'à 1000 m², il est possible de réaliser un calcul très simplifié de la ventilation basé sur les petites installations avec valeurs standards. Pour tous les autres cas, il convient d'effectuer un calcul externe pour les besoins en électricité annuels et le débit d'air neuf. Le calcul de la ventilation est basé sur la méthode de Minergie [10].

Le type de ventilation est défini par affectation, c'est-à-dire qu'en cas d'affectations mixtes, il peut y avoir jusqu'à trois variantes différentes de ventilations (III. 5). Les débits d'air neuf thermiquement actifs, calculés par affectation et rapportés à la surface, sont compilés en une valeur globale pondérée en fonction de la surface (analogue à l'Éq. 1), qui est ensuite utilisée pour calculer les besoins de chaleur pour le chauffage Q_{H,eff} (chap. 2). Le besoin en électricité pour la ventilation E_V se calcule à partir de la somme des différentes affectations.

Besoin en électricité pour la ventilation Ev

N _{Nutz}		
$E_V = \sum_{n=1}^{\infty} (E_{V,std,Nutz} + E_{V,eff,Nutz})_n$	[kWh/a]	Éq. 25

n	[-]	Index courant
N _{Nutz}	[-]	Nombre d'affectations N_{Nutz} (n = 1 N_{Nutz}), selon lequel il peut y avoir, par affectation, soit un besoin en électricité pour les petites installations avec des valeurs standard, soit un besoin en électricité pour les autres installations de ventilation.
Ev,std,Nutz	[kWh/a]	Besoin en électricité pour les petites installations avec des valeurs standard, chap. 4.2
E _{V,eff,Nutz}	[kWh/a]	Besoin en électricité pour les autres installations de ventilation, chap. 4.3

III. 5 Diagramme de flux – Calcul des débits d'air neuf actifs effectifs et des besoins en électricité.

Remarque

Si l'affectation de l'imm. coll. fait partie d'une affectation mixte, le besoin en électricité pour l'extraction d'air (hottes aspirantes, salle de bains/WC) est mis à 0 kWh/a si au moins l'une des affectations dispose d'une installation de ventilation.

4.2 Petites installations avec valeurs standard

Les petites installations avec valeurs standard requièrent les données suivantes:

- Choix de l'installation de ventilation (selon Tab. 13)
- Nombre de pièces avec air pulsé (habitat) ou nombre de personnes (administration/école) - (saisie libre)
- Choix de l'échangeur de chaleur (selon Tab. 17)
- Choix du moteur de ventilation (selon Tab. 18)

Débit d'air neuf thermiquement actif

Le débit d'air neuf thermiquement actif $q_{th,std,eff,Nutz}$ pour les petites installations avec valeurs standard se calcule comme suit pour chaque affectation:

$$q_{th,std,eff,Nutz} = \frac{V'_{Luft,Nutz} * V'_{Nenn,Nutz,eff}}{V'_{Nenn,Nutz} * A_{E,Nutz}} * (1 - \eta_{WT}) + v_o \qquad [\text{m}^3/(\text{h m}^2)] \quad \text{Éq. 26}$$

V'Luft,Nutz	[m ³ /h]	Débit d'air de l'affectation selon Tab. 14
V'Nenn,Nutz	[m³/h]	Débit volumique nominal de l'affectation selon Tab. 15
V'Nenn,Nutz,eff	[m³/h]	Débit volumique nominal effectif de l'affectation selon Éq. 27
A _{E,Nutz}	[m²]	Surface de référence énergétique de l'affectation
ηωτ	[-]	Rendement de la récupération de chaleur de l'échangeur thermique selon Tab. 17
V ₀	[m³/(h m²)]	Débit volumique d'infiltration rapporté à la surface (constant) $v_0 = 0,15 \; m^3/(h \; m^2)$

Le débit volumique nominal effectif $V'_{Nenn,Nutz,eff}$ se calcule, en relation avec l'affectation, comme suit:

$$V'_{Nenn,Nutz,eff} = \max \left(N_{RaumPers}; ceil \left(\frac{A_{E,Nutz}}{V'_{min,Nutz}} \cdot f_{korr} \right) \right) * V'_{Nenn,Nutz}$$
 [m³/h] Éq. 27

NRaumPers	[-]	Nombre de pièces avec air pulsé (habitat) ou nombre de personnes (administration/école)
A _{E,Nutz}	[m ²]	Surface de référence énergétique de l'affectation
V'min,Nutz	[m³/h]	Débit volumique minimal de l'affectation selon Tab. 16
V'Nenn,Nutz	[m³/h]	Débit volumique nominal de l'affectation selon Tab. 15
ceil()	[-]	Le contenu entre parenthèses est arrondi au prochain nombre entier supérieur
f _{corr}	[m/h]	Facteur de correction des unités, f _{corr} = 1 m/h

Besoin en électricité

Le besoin en électricité $E_{V,std,Nutz}$ pour les petites installations avec valeurs standard se calcule comme suit pour chaque affectation:

t _{be,V}	[h]	Durée d'exploitation d'une petite installation avec valeurs standard
Espez,Nutz	[kWh/(m² a)]	Besoin en électricité spécifique à l'affectation selon Tab. 13
V'Nenn,Nutz,eff	[m³/h]	Débit volumique nominal effectif de l'affectation selon Tab. 15
KAntrieb	[1/m]	Paramètre en relation avec le moteur de la ventilation selon Tab. 18

ENDK 18.03.2024 39

La durée t_{be,V} se calcule comme suit:

Habitation

$t_{be,V} = 8736$	[h]	Éq. 29
DC,V		

Cette période comprend l'entretien (changement de filtre, nettoyage et, tous les deux ou trois ans, travaux d'entretien et de maintenance importants).

Administration et école

	$t_{be,V} = \frac{V'_{Luft,Nutz}}{V'_{Nenn,Nutz}} * 8760$		[h]	Éq. 30
--	---	--	-----	--------

V'Luft,Nutz	[m³/h]	Débit d'air de l'affectation selon Tab. 14
V'Nenn,Nutz	[m3/h]	Débit volumique nominal de l'affectation selon
		Tab. 15

4.3 Autres installations de ventilation

Les installations de ventilation qui n'appartiennent pas à la catégorie des petites installations avec valeurs standard nécessitent des saisies pour le débit d'air neuf et le besoin en électricité des programmes externes.

Les saisies suivantes sont nécessaires (saisie libre):

- Débit d'air neuf (toujours)
- Besoin en électricité pour la ventilation + protection contre le gel E_{V,Nutz} (toujours)
- Besoin en électricité pour le froid E_{C,Nutz} (uniquement pour le refroidissement, le refroidissement+humidification)
- Besoin en électricité pour la climatisation et l'humidification E_{hu,Nutz} (uniquement pour l'humidification, le refroidissement+humidification)

Débit d'air neuf thermiquement actif

Le débit d'air neuf effectif thermiquement actif $q_{th,eff,Nutz}$ se calcule comme suit pour chaque affectation:

$$q_{th,eff,Nutz} = \frac{V'_{th}}{A_{E,Nutz}} + v_o$$
 [m³/(h m²)] Éq. 31

V'th	[m ³ /h]	Débit d'air neuf (saisie libre)
A _{E,Nutz}	[m ²]	Surface de référence énergétique de l'affectation
V ₀	[m³/(h m²)]	Débit volumique d'infiltration rapporté à la surface (constant) $v_0 = 0.15 \; m^3/(h \; m^2)$

Besoin en électricité

Le besoin en électricité $E_{V,eff,Nutz}$ se calcule à partir du besoin en électricité pour la ventilation + protection contre le gel $E_{V,Nutz}$, le besoin en électricité pour le refroidissement $E_{C,Nutz}$ et le besoin en électricité pour la climatisation et l'humidification $E_{hu,Nutz}$.

$E_{V,eff,Nutz} = E_{V,Nutz} + E_{C,Nutz} + E_{hu,Nutz} $ [kWh/a] Éq. 32
--

E _{V,Nutz}	[kWh/a]	Besoin en électricité pour la ventilation + protection contre le gel			
Ec,Nutz	[kWh/a]	Besoin en électricité pour le froid, lorsque Refroidissement Refroidissement+humidification sinon Ec,Nutz = 0			
E _{hu} ,Nutz	[kWh/a]	Besoins en électricité pour la climatisation et l'humidification, lorsque Humidification Refroidissement+humidification sinon E _{hu,Nutz} = 0			

4.4 Tableau de référence Ventilation

Tab. 13 Besoin en électricité spécifique, valeurs standard pour les petites installations, $E_{spez,Nut}z$ [10].

Choix de la ventilation	Besoin en électricité spécifique, [kWh/(m² a)]				
	lmm. coll.	Mais. ind.	Administration	École	
Installation d'air fourni et d'air repris (double flux) sans RC	0,94	0,94	0,88	0,88	
Installation d'air fourni et d'air repris (double flux) avec RC	0,94	0,94	0,88	0,88	
Installation d'air fourni et d'air repris (double flux) avec pompe à chaleur	1,14	1,14	0,98	0,88	
Installation d'air repris (simple flux) sans RC	0,58	0,58	0,58	0,58	
Installation d'air repris (simple flux) avec	0,68	0,68	0,68	0,68	
Appareil de ventilation par local avec RC	0,70	0,70	0,70	0,70	
Aération par les fenêtres (automatique)	0,012	0,012	0,032	0,032	

Tab. 14 Débit d'air/unité, valeurs standard pour les petites installations, V'_{Luft,Nutz} [10].

Choix de la ventilation	Débit d'air, [m³/h]				
	Imm. coll.	Mais. ind.	Administration	École	
Installation d'air fourni et d'air repris (double flux) sans RC	26,2	26,2	8,6	4,6	
Installation d'air fourni et d'air repris (double flux) avec RC	26,2	26,2	8,6	4,6	
Installation d'air fourni et d'air repris (double flux) avec pompe à chaleur	35,1	35,1	11,4	6,0	
Installation d'air repris (simple flux) sans RC	35,1	35,1	11,4	6,0	
Installation d'air repris (simple flux) avec RC	35,1	35,1	11,4	6,0	
Appareil de ventilation par local avec RC	26,2	26,2	8,6	4,6	
Aération par les fenêtres (automatique)	40,0	40,0	40,0	33,0	

Tab. 15 Débit volumique nominal/unité, valeurs standard pour les petites installations, V'_{Luft,Nutz} [10].

Choix de la ventilation	Débit volumique nominal, [m³/h]			
	lmm. coll.	Mais. ind.	Administration	École
Installation d'air fourni et d'air repris (double flux) sans RC	30	30	30	25
Installation d'air fourni et d'air repris (double flux) avec RC	30	30	30	25
Installation d'air fourni et d'air repris (double flux) avec pompe à chaleur	40	40	40	33
Installation d'air repris (simple flux) sans RC	40	40	40	33
Installation d'air repris (simple flux) avec RC	40	40	40	33
Appareil de ventilation par local avec RC	30	30	30	25
Aération par les fenêtres (automatique)	40	40	40	33

Tab. 16 Débits volumiques standard V'min Nutz et débits volumiques d'air neuf standard rapportés à l'affectation q_{th,std,Nutz}.

Débits volumiques	Unité	Imm. coll. Mais. ind.	Admini- stration	École	Commerce	Restaurant	Hôtel
V'min,Nutz [10]	[m ³ /h]	50	20	10	-	-	-
Débit volumique d'air neuf standard rapporté à la surface q _{th,std,Nutz} selon SIA 380/1:2016	[m ³ /(h m ²)]	0,7	0,7	0,7	0,7	1,2	0,7

Tab. 17 Liste déroulante Échangeur de chaleur et Rendement de la récupération de chaleur, η_{WT} [10]

Liste déroulante Échangeur de chaleur	Rendement [-]
Aucun échangeur de chaleur	0%
Courant croisé	45%
Courant inversé	70%
Échangeur rotatif	70%

Tab. 18 Liste déroulante et paramètre pour le moteur du ventilateur [10].

Liste déroulante pour le moteur du ventilateur	K _{Antrieb} [1/m]
Aucun ventilateur	1
Moteur AC	1
Moteur DC/EC	0,5

5 Electricité produite sur place : photovoltaïque, cogénération, CCF

Dans l'étiquette, seule l'électricité autoconsommée ainsi que 40 % du courant injecté dans le réseau sont pris en compte (analogue à Minergie [11])

La quantité imputable d'électricité produite sur place par du photovoltaïque et de la cogénération / du CCF se calcule comme suit :

E _{el,anr}	[kWh/a]	Quantité imputable d'électricité produite sur place
E _{PV}	[kWh/a]	Produit de l'installation photovoltaïque, saisie libre
Ewkk	[kWh/a]	Produit de l'installation de congén./ CCF, saisie libre
EVR	[-]	Part d'autoconsommation selon justificatif avec PVopti [12] , pondéré entre photovoltaïque et CCF, ou valeur par défaut 0.2
f _{Netz}	[-]	Part imputable de l'injection dans le réseau: f _{Netz} = 0,4

ENDK 18.03.2024 44

6 Électricité

6.1 Généralités

Les besoins totaux en électricité E_{el,std} sont constitués de la somme des différentes affectations. Les besoins en électricité sont calculés pour les différentes affectations selon le chap. 6.2 (habitat) et 6.4 (bâtiments non résidentiels)

Besoins en électricité Eel,std:

N_{Nutz}		
$E_{el,std} = \sum_{n=1}^{\infty} (E_{el,std,Nutz})_n$	[kWh/a]	Éq. 34

n	[-]	Index courant
N _{Nutz}	[-]	Nombre d'affectations
Eel,std,Nutz,n	[kWh/a]	Besoins en électricité des différentes affectations n

Remarque

Le CECB dispose d'un facteur pour le degré d'équipement. Celui-ci étant toujours placé sur « standard = 1 » pour l'étiquette, le degré d'équipement n'est pas pris en compte ici. Ceci concerne les catégories suivantes :

- éclairage (habitat/bâtiments non résidentiels)
- petits appareils et électronique (habitat)
- équipements d'exploitation et appareils (bâtiments non résidentiels)

6.2 Habitat

6.2.1 Généralités

Pour l'affectation Habitat (mais. ind./imm. coll.), l'étiquette doit contenir un équipement minimal comprenant des appareils (Tab. 19). Tous les consommateurs à disposition peuvent être sélectionnés par catégorie à partir de listes fixes.

Tab. 19 Exigences minimales en termes d'équipement en appareils pour l'habitat

Catégorie	Exigences minimales	Liste déroulante
Appareils et installations, A+I (G+I dans les formules)	Plaques de cuisson électriques ou à gaz (= 1 plaque de cuisson/appartement) Four électrique ou à gaz (= 1 four/appartement) Réfrigérateur avec ou sans congélateur >/< 160l (= 1 réfrigérateur/appartement) Pour chaque réfrigérateur sans congélateur, au moins un congélateur séparé doit être saisi (nombre de réfrigérateurs sans congélateur = nombre de congélateurs séparés) Lave-linge (au moins 1 par bâtiment, et non par appartement)	Tab. 20
Petits appareils et électronique, P+E (K+E dans les formules)	Au moins 80% de la surface de référence énergétique doit être occupée par les petits appareils et l'électronique	Tab. 23
Éclairage, écl.	Au moins 80% de la surface de référence énergétique doit être occupée par l'éclairage	Tab. 24

Le besoin en électricité E_{el,std,Nutz} pour l'habitat est calculé selon l'Éq. 35 :

E _{A+I}	[kWh/a]	Besoin en électricité pour les appareils et les installations
E _{P+E}	[kWh/a]	Besoin en électricité pour les petits appareils et l'électronique
E _{ecl}	[kWh/a]	Besoin en électricité pour l'éclairage
EACE	[kWh/a]	Besoin en électricité pour autres consommateurs
fb	[-]	Le facteur d'occupation traduit la différence des besoins par rapport à un appartement 3 pièces dans la moyenne (Éq. 36)

Facteur d'occupation f_b (en s'appuyant sur la SIA 2031:2016 [13])

$$f_b = 1 + \frac{N_{Zimmer} - 3}{10}$$
 [-] Éq. 36

[-] Nzimmer	Nombre moyen de pièces de tous les appartements, max. Nz _{immer} = 7 (détermination par le CECB). Les cuisines, les salles de bains et les WC. ne comptent pas comme pièces.
----------------	--

6.2.2 Appareils et installations, A+I (G+I)

Appareils sans raccordement à l'eau

À partir du Tab. 20, les types d'appareils suivants sans raccordement à l'eau peuvent être sélectionnés:

- Réfrigérateur
- Congélateurs séparés, si réfrigérateur sans congélateur
- Plaque de cuisson
- Four / steamer
- Hotte aspirante cuisine
- Aspiration Salle de bains/WC
- Séchage du linge (sèche-linge, séchoir à air pulsé)
- Ascenseur

À l'exception du sèche-linge, le besoin en électricité se calcule comme suit pour chaque type d'appareil:

$E_{G+I} = \sum_{k=1}^{N_{Typ}} (N_{Ger\"{a}te} * E_{Qualit\"{a}t,G+I})_k$	[kWh/a]	Éq. 37
--	---------	--------

k	[-]	Index courant
N _{Тур}	[-]	Nombre de types d'appareils
N _{App}	[-]	Nombre d'appareils par type
EQualität,A+I	[kWh/a]	Besoin en électricité d'un appareil en relation avec la qualité selon Tab. 20

Pour le sèche-linge, s'applique:

$$E_{G+I} = \left(N_{Whg} - 1 + \frac{N_{Ger\"{a}te}}{N_{Whg}}\right) * E_{Qualit\"{a}t,G+I} * \frac{2}{3} \qquad \text{[kWh/a]} \qquad \acute{\text{Eq. 38}}$$

N _{Whg}	[-]	Nombre d'appartements dans le bâtiment
N _{App}	[-]	Nombre total de sèche-linges
E _{Qualität,A+I}	Besoin en électricité <mark>d'un appareil</mark> en qualité, Tab. 20	
		Si des sèche-linge de différentes qualités sont utilisés, les besoins en électricité se déterminent au prorata

Le facteur 2/3 tient compte qu'en dépit du sèche-linge, un tiers du linge en moyenne est séché sur un étendage [14].

Cas particulier « cuisson au gaz » (plaques de cuisson et four au gaz naturel)

Si l'on sélectionne « cuisson au gaz », le besoin en gaz pour les plaques de cuisson et le four est saisi à l'aide de l'Éq. 39 et l'on attribue l'agent énergétique « gaz naturel ».

$E_{GasKB} = (N_{Ger\"{a}teK} \cdot E_{GasK} + N_{Ger\"{a}teB})$	[kWh/a]	Éa. 39
$\cdot E_{GasB}) \cdot f_b$	£	1.

NGeräteK bzw. B	[-]	Nombre de plaques de cuisson et de fours
E _{GasK} , E _{GasB}	[kWh/a]	Besoin en gaz selon Tab. 21
fr	[-]	Le facteur d'occupation traduit la différence des besoins par rapport à un appartement 3 pièces dans la moyenne (Éq. 36)

Appareils avec raccordement à l'eau

Les appareils suivants peuvent être sélectionnés avec ou sans raccordement à l'eau chaude :

- lave-vaisselle et
- lave-linge

Le besoin en électricité pour les lave-vaisselles avec/sans raccordement à l'eau chaude est calculé selon l'Éq. :

1	$E_{G+I} = (N_{Ger\"{a}te} \cdot E_{Qualit\"{a}t,G+I})_{mit} + (N_{Ger\"{a}te} \cdot E_{Qualit\"{a}t,G+I})_{ohne}$			[kWh/a]	Éq. 40	
	N _{App} [-] Nombre de lave-vaissell l'eau chaude			es avec/sans	raccordem	ent à
	E _{Qualität,A+I}	[kWh/a]	Besoin en électricité en relation avec la qualité lave-vaisselle avec/sans raccordement à l'eau (Tab. 20			

Le besoin en électricité des lave-linge avec/sans raccordement à l'eau chaude résulte de l'Éq. 41:

$$E_{G+I} = \left(N_{Whg} - 1 + \frac{N_{Ger\"{a}te,mit}}{N_{Whg}}\right) \cdot E_{Qualit\"{a}t,G+I,mit} \cdot f_{WW,mit} + \left(N_{Whg} - 1 + \frac{N_{Ger\"{a}te,ohne}}{N_{Whg}}\right) \cdot E_{Qualit\~{a}t,G+I,ohne} \cdot f_{WW,ohne}$$
 [kWh/a] Éq. 41

NWhg	[-]	Nombre d'appartements dans le bâtiment	
NGeräte,mit	[-]	Nombre total de lave-linge avec/sans raccordement à l'eau chaude	
E _{Qualit} t,G+I,mit E _{Qualit} t,G+I,ohne	[kWh/a]	Besoin en électricité en relation avec la qualité pour les lave-linge avec/sans raccordement à l'eau chaude, Tab. 20	
		Si des lave-linge de différentes qualités sont utilisés, les besoins en électricité se déterminent au prorata	
f _{ww,mit} f _{ww,ohne}	[-]	Part de lave-linge avec/sans raccordement à l'eau chaude sur la somme totale des machines à laver: fww,mit = NGeräte,mit/(NGeräte,mit + NGeräte,ohne) fww,ohne = 1 - fww,mit	

Si l'on sélectionne des machines à laver et/ou des lave-vaisselles avec raccordement à l'eau chaude, les besoins en énergie utile pour l'eau chaude doivent être calculés en plus des besoins en électricité correspondants selon l'Éq. 42 et l'Éq. 43. Le besoin en eau chaude supplémentaire est pris en compte lors du calcul de l'énergie finale de l'eau chaude (chap. 3.8, Éq. 18).

Besoins en énergie utile supplémentaires Eau chaude lave-vaisselle :

$Q_{WW_Sp\"{u}l} = N_{Ger\"{a}te,mit} \cdot Q_{W_Sp\"{u}l}$	[kWh/a]	Éq. 42
---	---------	--------

NGeräte,mit	[-]	Nombre de lave-vaisselles avec raccordement à l'eau chaude
Q _{W_Spül}	[kWh/a]	Besoins en chaleur supplémentaires pour l'eau chaude d'un lave-vaisselle Tab. 22

Besoins en énergie utile supplémentaires Eau chaude lave-linge :

$Q_{WW_Wasch} =$	$\left(N_{Whg} - 1 + \frac{N_{Ger\"{a}te,mit}}{N_{Whg}}\right) \cdot f_{WW,mit} \cdot Q_{W_Wasch}$	[kWh/a]	Éq. 43
-------------------	---	---------	--------

NWhg	[-]	Nombre d'appartements dans le bâtiment
NGeräte,mit	[-]	Nombre de lave-linge avec raccordement à l'eau chaude
f _{WW,mit}	[-]	Part de lave-linge avec raccordement à l'eau chaude sur la somme totale des lave-linge
Qw_Wasch	[kWh/a]	Besoins en chaleur supplémentaires pour l'eau chaude d'un lave-linge, Tab. 22

6.2.3 Petits appareils et électronique, P+E (K+E)

Le besoin en électricité pour les petits appareils et l'électronique est calculé pour chaque affectation des pièces sélectionnée (Tab. 23):

$E_{K+E} = \sum_{k=1}^{N_{RNutz}} (E_{Basisbedarf,K+E} \cdot A_{RNutz,K+E})_{k}$	[kWh/a]	Éq. 44
k=1		

k	[-]	Index courant
N _{RNutz}	[-]	Nombre d'affectations des pièces
E _{Basisbedarf,A+E}	[kWh/(m² a)]	Tab. 23
ARNutz,A+E	[m ²]	Surface de référence énergétique, pour l'affectation des pièces sélectionnée

6.2.4 Éclairage Écl

Le besoin en électricité pour l'éclairage est calculé pour chaque affectation des pièces sélectionnée (Tab. 24) :

$$E_{Bel} = \sum_{k=1}^{N_{RNutz}} (E_{Basisbedarf,Bel} \\ \cdot f_{Qualit"at,Bel} \cdot A_{RNutz,Bel})_{k}$$
 [kWh/a] Éq. 45

ENDK 18.03.2024 50

k	[-]	Index courant
N _{RNutz}	[-]	Nombre d'affectations des pièces
EBasisbedarf,ecl	[kWh/(m² a)]	Besoin en électricité en relation avec l'affectation des pièces, Tab. 24
fQualität,ecl	[-]	Facteur visant l'échelle des besoins de base sur la qualité sélectionnée, Tab. 25
A _{RNutz,ecl}	[m ²]	Surface de référence énergétique, pour l'affectation par pièce sélectionnée

6.2.5 Autres consommateurs ACE (WVA)

Il est possible ici d'effectuer une saisie libre des autres consommateurs faisant partie du bâtiment. Il peut s'agir p. ex. de l'éclairage du garage ou de la terrasse:

$E_{WVA} = \sum_{k=1}^{N_{Typ}} (N_{Ger\"{a}te} \cdot P_{el} \cdot t_{be,WVA})_{k}$	[kWh/a]	Éq. 46
---	---------	--------

k	[-]	Index courant
N_{Typ}	[-]	Nombre de types d'appareils
N _{App}	[-]	Nombre d'appareils
Pel	[kW]	Performance d'un appareil
t _{be,WVA}	[h]	Durée d'exploitation de l'appareil

Les autres consommateurs faisant partie du bâtiment sont, par exemple :

- Ventilation pour le parking souterrain
- Installations de ventilation et climatisation mobiles et fixes destinés aux locaux utilisés
- Bandes chauffantes pour gouttières et voies d'accès
- Ascenseurs intérieurs et installations intérieures de bien-être, comme saunas, jacuzzis et bains à remous
- Installations techniques pour piscines intérieures inférieures à 10 % de la SRE totale

Les consommateurs ne faisant pas partie du bâtiment sont, par exemple :

- Éclairage extérieur
- Installations extérieures de bien-être, comme saunas, jacuzzis et bains à remous, ainsi que piscines extérieures
- Aquariums
- Spots extérieurs

6.3 Tableau de référence Habitation

Les désignations **Réf C3.3.x** correspondent aux désignations utilisées dans le Manuel CECB V5.1 destiné aux experts [8].

Tab. 20 Habitation: liste déroulante et valeurs de base des différentes qualités pour les appareils et les installations, Equalitat.A+1. (Réf C3.3.1-4, C3.3.6-10)

Mais. ind., imm. locatif	Qualité A+I [kWh/a]			
Type d'appareils	Très bonne	Bonne	Standard	Mauvaise
Plaques de cuisson	90	95	100	120
(plaques de cuisson au gaz)	-	-	-	-
Four	40	45	50	80
(four au gaz)	-	•	-	-
Réfrigérateur > 160 l sans congélateur	70	120	230	280
Réfrigérateur > 160 l avec congélateur	110	190	250	300
Réfrigérateur < 160 l sans congélateur	65	100	200	240
Réfrigérateur < 160 l avec congélateur	90	150	210	260
Grand congélateur	120	135	170	210
Petit congélateur	100	125	150	190
Lave-vaisselle, sans eau chaude	250	300	350	400
Lave-vaisselle, avec eau chaude	160	190	230	270
Lave-linge, sans eau chaude	150	225	350	400
Lave-linge, avec eau chaude	120	170	230	270
Sèche-linge	300	325	350	400
Sèche-linge, air ambiant	230	270	290	350
Ascenseur	400	510	550	700
Hotte de cuisine	50	60	75	90
Extraction air vicié Salle de bains/WC	50	60	75	90

Tab. 21 Habitation : valeurs de base pour cuisson plaques/four au gaz, E_{GaskB} .(C3.3.9)

Mais. ind., imm. locatif	Énergie finale gaz naturel cuisson plaques/four [kWh/a]
Cuisinière au gaz naturel	120
Four au gaz naturel	80

Tab. 22 Habitation : valeurs de base pour les appareils et les installations: énergie utile eau chaude pour les lave-linge et les lave-vaisselles avec raccordement à l'eau chaude, Q_{W_Wasch} , $Q_{W_Sp\"ul}$ (Ref C3.3.5)

Mais. ind., imm. locatif	Énergie utile eau chaude [kWh/a]
Lave-linge, avec eau chaude	40
Lave-vaisselle, avec eau chaude	40

Tab. 23 Habitation : valeurs de base pour les petits appareils et l'électronique, E_{Basisbedarf,A+E} (Ref C3.3.11)

Mais. ind., imm. locatif	Besoins de base, P+E [kWh/(m² a)]
Appartement	8
Cage d'escalier	2
Bureau	10
Cave, combles	2
Locaux de rangement, garage, atelier, not.	4

Tab. 24 Habitation : valeurs de base pour l'éclairage, $E_{\text{Basisbedarf,ecl}}$ (Ref C3.3.13)

	,
Mais. ind., imm. locatif	Besoins de base, Ecl [kWh/(m² a)]
Appartement	5
Cage d'escalier	2
Bureau	7
Cave, combles	1
Locaux de rangement, garage, atelier, not.	2

 $Tab.\ 25\quad Habitation: facteur pour l'évaluation de la qualité de l'éclairage, f_{Qualität,ecl}\ Ref\ C3.3.15)$

Mais. ind., imm.	Qualité, éclairage [-]			
	75-100 % lampes efficaces + régulation	75-100 % lampes efficaces	25-75 % lampes efficaces	0-25 % lampes efficaces
Appartement	0,4	0,7	1	1,3
Cage d'escalier	0,4	0,7	1	1,3
Bureau	0,4	0,7	1	1,3
Cave, combles	0,4	0,7	1	1,3
Locaux de rangement, garage, atelier, not.	0,4	0,7	1	1,3

6.4 Bâtiments non résidentiels

6.4.1 Généralités

Le besoin en électricité E_{el,std,Nutz} pour les bâtiments non résidentiels est calculé comme suit :

$$E_{el,std,Nutz} = \sum E_{B+G} + \sum E_{Bel} + \sum E_{WVA}$$
 [kWh/a] Éq. 47

E _{B+G}	[kWh/a]	Besoin en électricité pour les équipements d'exploitation et les appareils
E _{ecl}	[kWh/a]	Besoin en électricité pour l'éclairage
E _{ACE}	[kWh/a]	Besoin en électricité pour autres consommateurs

6.4.2 Équipements d'exploitation et appareils B+G

Pour les équipements d'exploitation et les appareils, le besoin en électricité E_{B+G} est calculé comme suit :

$$E_{B+G} = \sum_{k=1}^{N_{RNutz}} \left(E_{Basisbedarf,B+G} \\ \cdot f_{Qualit"at,B+G} \cdot A_{RNutz,B+G} \right)_{k}$$
 [kWh/a] Éq. 48

k	[-]	Index courant
N _{RNutz}	[-]	Nombre d'affectations des pièces
EBasisbedarf, B+G	[kWh/(m² a)]	Besoin en électricité en relation avec l'affectation de la pièce Administration Tab. 26 École Tab. 28 Commerce Tab. 30 Restaurant Tab. 32
		Hôtel Tab. 34
fQualität,Bf+G	[-]	Facteur visant l'échelle des besoins de base sur la qualité sélectionnée Administration Tab. 27 École Tab. 29 Commerce Tab. 31 Restaurant Tab. 33 Hôtel Tab. 35
A _{RNutz,B+G}	[m ²]	Surface de référence énergétique, pour l'affectation par pièce sélectionnée

ENDK 18.03.2024 55

6.4.3 Éclairage Écl

Pour le besoin en électricité pour l'éclairage E_{Bel} s'applique :

$$E_{Bel} = \sum_{k=1}^{N_{RNutz}} \left(E_{Basisbedarf,Bel} \\ \cdot f_{Qualit"at,Bel} \cdot A_{RNutz,Bel} \right)_{k}$$
 [kWh/a] Éq. 49

k	[-]	Index courant		
NRNutz	[-]	Nombre d'affectations des pièces		
EBasisbedarf, Bel	[kWh/(m² a)]	Besoin en électricité en relation avec l'affectation de la pièce Administration Tab. 26 École Tab. 28		
		Commerce Tab. 30 Restaurant Tab. 32 Hôtel Tab. 34		
fQualität,Bel	[-]	Facteur visant l'échelle des besoins de base sur la qualité sélectionnée Administration Tab. 27 École Tab. 29 Commerce Tab. 31 Restaurant Tab. 33 Hôtel Tab. 35		
A _{RNutz,Bel}	[m²]	Surface de référence énergétique, pour l'affectation par pièce sélectionnée		

6.4.4 Autres consommateurs ACE (WVA)

Il s'agit d'une possibilité de saisir librement les autres consommateurs supplémentaires faisant partie du bâtiment pour toutes les affectations. Le besoin en électricité Ewva est calculé comme suit :

$$E_{WVA} = \sum_{k=1}^{N_{Typ}} \left(N_{Ger\"{a}te} \cdot P_{el} \cdot t_{be,WVA} \right)_{k}$$
 [kWh/a] Éq. 50

k	[-]	Index courant
N _{Typ}	[-]	Nombre de types d'appareils
N _{App}	[-]	Nombre d'appareils du type k
Pel	[kW]	Performance d'un appareil de type k
t _{be,ACE}	[h]	Durée d'exploitation de l'appareil de type k

6.5 Tableaux de référence Bâtiments non résidentiels

Les désignations Réf C3.3.x correspondent aux désignations utilisées dans le Manuel CECB V5.1 destiné aux experts [8].

6.5.1 Tableaux de référence Électricité Administration

Tab. 26 Administration : valeurs de base pour les équipements d'exploitation, les appareils et l'éclairage E_{Basisbedarf,B+G}, E_{Basisbedarf,ecl} (Réf C3.3.20/23) (B+G [15], Écl [16] « état » avec conversion: surface de référence énergétique = 1,2 x surface nette)

	Besoins de base B+G, Ecl [kWh/(m² a)]			
Administration	Équipements d'exploitation et appareils B+G	Éclairage Écl.		
Accès et approvisionnement	2,2	9,7		
Locaux annexes	2,2	7		
Bureau	24,2	18,6		
Locaux de rangement, garage, not.	3,6	3,8		

Tab. 27 Administration : facteur pour l'évaluation de la qualité de l'équipement d'exploitation et des appareils, f_{Qualität,B+G}, f_{Qualität,Bel} (Réf C3.3.22/25)

		Qualité B+G, Ecl [-]			
	B+G	Ultramoderne	Moderne	Standard	Ancienne
Administration	Ecl	75-100% lampes efficaces + régulation	75-100% lampes efficaces	25-75% lampes efficaces	0-25% lampes efficaces
Accès et approvisionnement		0,4	0,7	1	1,3
Locaux annexes		0,4	0,7	1	1,3
Bureau		0,4	0,7	1	1,3
Locaux de rangement, garage, not.		0,4	0,7	1	1,3

6.5.2 Tableaux de référence Électricité Écoles

Tab. 28 École : valeurs de base pour les équipements d'exploitation, les appareils et l'éclairage EBasisbedarf,B+G, EBasisbedarf,ecl (Réf C3.3.30/33) (B+G [15], Écl [16] « état » avec conversion: surface de référence énergétique = 1,2 x surface nette)

	Besoins de base B+G, Ecl [kWh/(m² a)]			
École	Équipements d'exploitation et appareils B+G	Éclairage Écl		
Salle de classe	8,8	15,3		
Salle des professeurs	7,6	11,2		
Hall d'entrée	15,3	12,4		
Couloir, accès	2,2	9,7		
Salle de gymnastique	2,2	31,5		
Vestiaires, douches, WC	2,2	7		
Locaux annexes	2,2	7		
Salle de chant, salle de réunion	0,2	2		
Bureau	24,2	18,6		
Locaux de rangement, garage, not.	3,6	3,8		

Tab. 29 École : facteur pour l'évaluation de la qualité de l'équipement d'exploitation et des appareils, $f_{Qualitat,B+G}$, $f_{Qualitat,B+G}$ (Ref C3.3.32)

		Qualité B+G, ecl [-]			
	B+G	Ultramoderne	Moderne	Standard	Ancienne
École	Ed	75-100% lampes efficaces + régulation	75-100% lampes efficaces	25-75% lampes efficaces	0-25% lampes efficaces
Salle de clas	se	0,4	0,7	1	1,3
Salle des pro	fesseurs	0,4	0,7	1	1,3
Hall d'entrée		0,4	0,7	1	1,3
Couloir, accès		0,4	0,7	1	1,3
Salle de gymnastique		0,4	0,7	1	1,3
Vestiaires, douches, WC		0,4	0,7	1	1,3
Locaux anne	xes	0,4	0,7	1	1,3
Salle de char réunion	nt, salle de	0,4	0,7	1	1,3
Bureau		0,4	0,7	1	1,3
Locaux de ra garage, not.	ingement,	0,4	0,7	1	1,3

6.5.3 Tableaux de référence Électricité Commerces

Tab. 30 Commerce : valeurs de base pour les équipements d'exploitation, les appareils et l'éclairage $E_{Basisbedarf,B+G}$, $E_{Basisbedarf,Bel}$ (Ref C3.3.36/37) (B+G [15], Ecl [16] « état » avec conversion: surface de référence énergétique = 1,2 x surface nette)

	Besoins de base B+G, Ecl [kWh/(m² a)]			
Commerces	Équipements d'exploitation et appareils B+G	Éclairage Écl		
Magasin d'alimentation	11,8	77,5		
Commerce spécialisé	9,1	77,5		
Meubles, bricolage, jardinage	8,5	62		
Surfaces de dégagement	2,2	9,7		
Locaux annexes	2,2	7		
Cage d'escalier	2,2	17,5		
Bureau	24,2	18,6		
Vestiaires, douches, WC	0	7		

Tab. 31 Commerce : facteur pour l'évaluation de la qualité de l'équipement d'exploitation, des appareils et de l'éclairage, f_{Qualität,B+G}, f_{Qualität,Bel} (Ref C3.3.39)

		Qualité B+G, Bel [-]				
B+G	Ultramoderne	Moderne	Standard	Ancienne		
Commerces Ecl	75-100% lampes efficaces + régulation	75-100% lampes efficaces	25-75% lampes efficaces	0-25% lampes efficaces		
Magasin d'alimentation	0,4	0,7	1	1,3		
Commerce spécialisé	0,4	0,7	1	1,3		
Meubles, bricolage, jardinage	0,4	0,7	1	1,3		
Surfaces de dégagement	0,4	0,7	1	1,3		
Locaux annexes	0,4	0,7	1	1,3		
Cage d'escalier	0,4	0,7	1	1,3		
Bureau	0,4	0,7	1	1,3		
Vestiaires, douches, WC	0,4	0,7	1	1,3		

6.5.4 Tableaux de référence Électricité Restaurants

Tab. 32 Restaurants : valeurs de base pour les équipements d'exploitation, les appareils et l'éclairage, E_{Basisbedarf,Bel}. (Ref C3.3.40/41) (B+G [15], Ecl [16] « état » avec conversion: surface de référence énergétique = 1,2 x surface nette)

	Besoins de base B+G, écl [kWh/(m² a)]			
Restaurant Affectation	Équipements d'exploitation et appareils B+G	Éclairage Écl.		
Restaurant	11,7	21,5		
Surfaces de dégagement	2,2	9,7		
Locaux annexes	2,2	7		
Bureau	24,2	18,6		
Vestiaires, douches, WC	2,2	7		

Tab. 33 Restaurants : facteur pour l'évaluation de la qualité de l'équipement d'exploitation, des appareils et de l'éclairage, f_{Qualităt,Bet}, f_{Qualităt,Bet} (Ref C3.3.43)

	Qualité B+G, Bel [-]				
B+G	Ultramoderne	Moderne	Standard	Ancienne	
Restaurant Ecl	75-100% lampes efficaces + régulation	75-100% lampes efficaces	25-75% lampes efficaces	0-25% lampes efficaces	
Restaurant	0,4	0,7	1	1,3	
Surfaces de dégagement	0,4	0,7	1	1,3	
Locaux annexes	0,4	0,7	1	1,3	
Bureau	0,4	0,7	1	1,3	
Vestiaires, douches, WC	0,4	0,7	1	1,3	

6.5.5 Tableaux de référence Électricité Hôtels

Tab. 34 Hôtels : valeurs de base pour les équipements d'exploitation, les appareils et l'éclairage, $E_{Basisbedarf,Bel}$. (B+G [15], écl [16] « état » avec conversion: surface de référence énergétique = 1,2 x surface nette)

	Besoins de base B+G, Ecl [kWh/(m² a)]			
Hôtel	Équipements d'exploitation et appareils B+G	Éclairage Écl		
Chambre d'hôtel	12,8	8,9		
Réception, zone d'accueil	37,2	41,3		
Bureau	24,2	18,6		
Surfaces de dégagement	2,2	9,7		
Cage d'escalier	2,2	17,5		
Espaces annexes	2,2	7		
Locaux de rangement, garage, etc.	3,6	3,8		

Tab. 35 Hôtels : facteur pour l'évaluation de la qualité de l'équipement d'exploitation, des appareils et de l'éclairage, f_{Qualităt,Bel}.

		Qualité B+G, ecl [-]				
	B+G	Ultramoderne	Moderne	Standard	Ancienne	
Hôtel	Ecl	75-100% lampes efficaces + régulation	75-100% lampes efficaces	25-75% lampes efficaces	0-25% lampes efficaces	
Chambre d'hôtel		0,4	0,7	1	1,3	
Réception, zone d'accueil		0,4	0,7	1	1,3	
Bureau		0,4	0,7	1	1,3	
Surfaces de d	égagement	0,4	0,7	1	1,3	
Cage d'escalier		0,4	0,7	1	1,3	
Espaces annexes		0,4	0,7	1	1,3	
Locaux de ran garage, etc.	gement,	0,4	0,7	1	1,3	

ENDK 18.03.2024 61

7 Étiquette

Pour déterminer l'étiquette, les valeurs de projet du bâtiment considéré sont comparées aux valeurs de référence. Les indices ainsi calculés constituent la base pour la classification.

En plus des émissions de CO₂ calculées selon l'OFEV et le « GHG Protocol » (Tab. 37) pour le chauffage et l'eau chaude sanitaire (Éq. 52**Erreur ! Source du renvoi introuvable.**), les valeurs calculées indiquent aussi les émissions de gaz à effet de serre (EGES). Les valeurs sont calculées sur la base des « Données des écobilans dans la construction, KBOB / ecobau / IPB 2009/1:2022 » [17] et n'ont pas d'influence sur la classification.

7.1 Valeur de projet

7.1.1 Enveloppe du bâtiment

La valeur de projet est le besoin de chaleur effectif pour le chauffage Q_{H,eff} calculé selon SIA 380/1:2016 en tenant compte d'une éventuelle installation de ventilation (chap. 2).

7.1.2 Efficacité globale

La valeur de projet pour l'efficacité globale E_p (énergie finale pondérée) se calcule à partir de:

$$E_{P} = \sum_{i=1}^{N_{WE}} \left(\left(E_{HE,WEi} + E_{WW,WEi} \right) \cdot f_{CH,WEi} \right) + E_{GasKB} \cdot f_{CH,Erdgas} + \left(E_{HE,hilfs} + E_{WW,hilfs} + E_{V} + E_{el,std} \right) \cdot f_{CH,el} - E_{el,anr} \cdot f_{CH,el}$$
 [kWh/a] Éq. 51

i	[-]	Index courant
Nwe	[-]	Nombre de producteurs de chaleur N _{WE} , i = 1 N _{WE}
fch,wEi	[-]	Facteur de pondération national correspondant à l'agent énergétique pour le producteur de chaleur WE _i selon Tab. 36
f _{CH,el}	[-]	Facteur de pondération national pour l'élec. selon Tab. 36
f _{CH,Erdgas}	[-]	Facteur de pond. national pour le gaz nat. selon Tab. 36
Eне,wei	[kWh/a]	Besoin en énergie finale pour le chauffage pour le producteur de chaleur WEi
E _{ww,wei}	[kWh/a]	Besoin en énergie finale pour l'eau chaude pour le producteur de chaleur WE _i
E _{GasKB}	[kWh/a]	Besoin en énergie finale pour cuisinière et four au gaz nat.
E _{HE,hilfs}	[kWh/a]	Énergie auxiliaire (électricité) pour le chauffage
Eww,hilfs	[kWh/a]	Énergie auxiliaire (électricité) pour l'eau chaude
Ev	[kWh/a]	Besoin en électricité pour la ventilation

Eel,std	[kWh/a]	Besoin en électricité pour les appareils, l'équipement d'exploitation, l'éclairage,
E _{PV,anr}	[kWh/a]	Rendement photovoltaïque imputable
E _{el,anr}	[kWh/a]	Quantité imputable d'électricité produite sur place (Chap. 5)

Tab. 36 HWW13 Facteurs de pondération nationaux [18].

Agents énergétiques	Facteurs de pondération nat.
mazout EL, gaz naturel/biogaz*, charbon, briquettes	1
Bois : bûches, copeaux de bois, pellets	0,5
Chaleur solaire	0
Chaleur à distance (part de fossile ≤ 25%)	0,4
Chaleur à distance part de fossile ≤ 50% (chaleur provenant des UIOM)	0,6
Chaleur à distance (part de fossile ≤ 75%)	0,8
Chaleur à distance (part de fossile > 75%)	1,0
Électricité (besoin)	2
Électricité (production)	2

^{*} Le facteur de pondération appliqué au biogaz est le même que celui appliqué au gaz naturel, que le biogaz soit acheté ou produit sur place.

7.1.3 Émissions directes de CO₂

La classification des émissions directes de CO_2 indique la quantité de CO_2 émise par le bâtiment pour le chauffage des locaux et l'eau chaude sanitaire sur place. Cela dépend des sources d'énergie fossiles utilisées et de l'efficacité énergétique.

La valeur de projet pour les émissions directes de $\text{CO}_{2,}$ ou $\text{E}_{\text{CO2},}$ se calcule comme suit:

	$\cdot f_{CO2,WEi} + E_{WW,WEi} \cdot f_{CO2,WEi} $	[kg CO ₂ /(m ² a)]	Éq. 52
E_{CO2} —	A_E		•

i	[-]	Index courant
N _{WE}	[-]	Nombre de producteurs de chaleur fossiles N _{WE} , i = 1 N _{WE}
f _{CO2,WEi}	[kg CO ₂ /kWh]	Facteurs CO ₂ selon Tab. 37
EHE,WEi	[kWh/a]	Besoins en énergie finale pour le chauffage pour le producteur de chaleur WE; avec des agents énergétiques fossiles
Eww,wei	[kWh/a]	Besoins en énergie finale pour l'eau chaude pour le producteur de chaleur WE; avec des agents énergétiques fossiles
AE	[m ²]	Surface de référence énergétique totale

Tab. 37 Facteurs CO_2 pour les agents énergétiques utilisés selon l'OFEV [18] ou l'ordonnance révisée sur le CO_2 .

Agents énergétiques	Facteurs CO ₂ [kg CO ₂ /kWh]
Mazout extra-léger	0,265
Gaz naturel (y.c. biogaz)	0,203

7.1.4 Émissions de gaz à effet de serre (EGES)

La valeur du projet pour les gaz à effet de serre E_{THGE} est calculée comme suit. Cette valeur est donnée à titre informatif.

$$E_{THG} = \left(\sum_{i=1}^{N_{WE}} \left(\left(E_{HE,WEi} + E_{WW,WEi} \right) \cdot k_{GHG,WEi} \right) + E_{GasKB} \cdot k_{GHG,Erdgas} \right.$$

$$+ \left(E_{HE,hilfs} + E_{WW,hilfs} + E_{V} + E_{el,std} \right) \cdot k_{GHG,el}$$

$$- \left(E_{PV,EV} + E_{WKK,anr} \right) \cdot k_{GHG,el} \right) \cdot \frac{1}{A_E}$$

$$\left[\text{kg/(m}^2 \text{ a}) \right] \quad \text{\'eq. 53}$$

		Index courant
1	[-]	Index courant
N _{WE}	[-]	Nombre de producteurs de chaleur N_{WE} , i = 1 N_{WE}
KGHG,WEi	[-]	Facteur d'EGES correspondant à la source d'énergie pour le producteur de chaleur WEi selon Tab. 38
k _{GHG,el}	[-]	Facteur d'EGES pour l'électricité selon Tab. 38
k GHG,Erdgas	[-]	Facteur d'EGES pour le gaz naturel selon Tab. 38
EHE,WEi	[kWh/a]	Besoin en énergie finale pour le chauffage pour le producteur de chaleur WEi
Eww,wEi	[kWh/a]	Besoin en énergie finale pour l'eau chaude sanitaire pour le producteur de chaleur WE _i
E _{GasKB}	[kWh/a]	Besoin en énergie finale pour le gaz naturel pour cuisson
E _{HE,hilfs}	[kWh/a]	Énergie auxiliaire (électricité) pour le chauffage
Eww,hilfs	[kWh/a]	Énergie auxiliaire (électricité) pour l'eau chaude sanitaire
Ev	[kWh/a]	Besoin en électricité pour la ventilation
E _{el,std}	[kWh/a]	Besoin en électricité pour les appareils, les équipements d'exploitation, l'éclairage,
E _{el,anr}	[kWh/a]	Quantité imputable d'électricité produite sur place (chap.5)
AE	[m2]	Surface de référence énergétique totale

Tab. 38 Facteurs d'émission de gaz à effet de serre selon la KBOB 2022 [17] et définition des valeurs pour le chauffage à distance du CECB.

Agents énergétiques	Facteurs d'EGES k _{GHG} [kg/kWh]
Mazout EL	0.324
Charbon, briquettes	0.398
Bois, bûches	0.023
Bois, copeaux de bois	0.011
Bois, pellets	0.028
Gaz naturel	0.230
Chaleur solaire	0
Chaleur à distance (≤ 25 % part de fossile)	0.05*
Chaleur à distance (≤ 50 % part de fossile UIOM)	0.12*
Chaleur à distance (≤ 75 % part de fossile)	0.19*
Chaleur à distance (> 75 % part de fossile)	0.29*
Électricité (BT, MT, HT, PAC)	0.125**
Électricité autoconsommée	0.125**

^{*} Mix selon Tab. 39 et les facteurs d'émission de gaz à effet de serre de la catégorie 42 de la KBOB 2022

Pour calculer les facteurs d'émission de gaz à effet de serre du chauffage à distance, le mix producteurs de chaleur est défini conformément au Tab. 39. L'incinération des OM contient toujours une part de combustible fossile.

Tab. 39 Mix producteurs de chaleur du chauffage à distance avec parts de différents combustibles fossiles.

	≤ 25 % fossile	≤ 50 % fossile	≤ 75 % fossile	> 75 % fossile
Part chauffage Mazout	1.0 %	4.5 %	8.2 %	15.0 %
Part chauffage Gaz	6.0 %	25.5 %	46.8 %	75.0 %
Part chauffage Holz	50.0 %	25.0 %	0.0 %	10.0 %
Part chauffage PAC eaux souterraines	25.0 %	25.0 %	25.0 %	0.0 %
Part incinération des déchets (sans part fossile)	18.0 %	20.0 %	20.0 %	0.0 %

^{**} Facteurs d'EGES selon le Mix consommateur CH de la KBOB 2022

7.2 Valeur de référence

7.2.1 Enveloppe du bâtiment

La valeur de référence est constituée de la valeur limite des besoins de chaleur pour le chauffage dans les nouvelles constructions Q_{H,li} calculé selon la SIA 380/1:2016. En cas d'affectations mixtes, les valeurs limites des besoins de chaleur pour le chauffage des différentes affectations sont systématiquement calculées pour l'ensemble du bâtiment avant d'être finalement compilées en une valeur de référence globale proportionnelle à la surface (analogue Éq. 1).

7.2.2 Efficacité globale

La valeur de référence résulte du bilan global effectué pour un bâtiment de référence, qui remplit les exigences générales de la SIA 380/1:2009 et dispose d'un besoin en électricité standard. La méthodologie correspond au cahier technique SIA 2031:2009 et 2016.

Équipement du bâtiment de référence :

- Le besoin de chaleur pour le chauffage correspond à 80% de la valeur limite pour les nouvelles constructions du besoin de chaleur pour le chauffage Q_{H,li} selon la SIA 380/1:2016, rendement du système de distribution 95%
- Le besoin de chaleur pour l'eau chaude correspond à 80% des besoins de chaleur pour l'eau chaude Q_{W,ref} selon Tab. 40 rendement du système de distribution 70%
- Chaudière au mazout pour le chauffage et l'eau chaude, rendement 90% pour le chauffage et l'eau chaude, f_{CH,ÖI} selon Tab. 36
- Aucune ventilation, aucun refroidissement mécanique
- Besoin en électricité E_{el,ref} selon Tab. 40, f_{CH,el} selon Tab. 36

La valeur de référence se calcule donc comme suit :

$$E_{P,ref} = \left(\left(\frac{0.8 \cdot Q_{H,li}}{0.9 \cdot 0.95} + \frac{0.8 \cdot Q_{W,ref}}{0.9 \cdot 0.7} \right) \cdot f_{CH,\"{O}l} + E_{el,ref} \cdot f_{CH,el} \right)$$
 [kWh/(m² a)] Éq. 54

Q _{H,li}	[kWh/(m² a)]	Valeur limite pour les nouvelles constructions du besoin de chaleur pour le chauffage selon la SIA 380/1:2016
Qw,ref	[kWh/(m ² a)]	Besoin en eau chaude standard selon Tab. 40
fcн,öı	[-]	Facteur de pondération national pour le mazout selon Tab. 36
E _{el,ref}	[kWh/(m ² a)]	Électricité standard selon Tab. 40
f _{CH,el}	[-]	Facteur de pondération national pour l'électricité selon Tab. 36

Lorsque le bâtiment présente plusieurs affectations, <u>l'</u>Éq. 54 est calculée pour chaque affectation et une valeur de référence pondérée en fonction de la surface est formée à partir des valeurs uniques (analogue à l'<u>Éq. 1</u>).

Tab. 40 Valeurs standard Eau chaude et Électricité pour le calcul du bâtiment de référence. Les valeurs de l'électricité pour les bâtiments non résidentiels proviennent de [20]; l'ensemble des autres valeurs sont reprises du cahier technique SIA 2031:2016.

Affectation	Q _{w,ref} [kWh/(m² a)]	E _{el,ref} [kWh/(m² a)]
Imm. coll.	21	28
Mais. ind.	14	22
Administration	7	34
École	7	19
Commerce	7	52
Restaurant	56	45
Hôtel	21	31

7.2.3 Émissions de CO₂

Aucune valeur de référence n'est calculée. La valeur de projet est directement répartie dans les classes sur la base des valeurs limites (chap. 7.3.4).

7.3 Indices et classification

7.3.1 Indices Enveloppe du bâtiment

L'indice pour le besoin de chaleur pour le chauffage $R_{\text{H,ref}}$ se calcule comme suit:

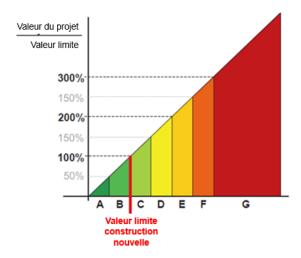
$$R_{H,ref} = \frac{Q_{H,eff}}{Q_{H,li}} \cdot 100$$
 [%] Éq. 55

Q _{H,eff}	[kWh/(m² a)]	Besoin en chaleur effectif pour le chauffage selon la SIA 380/1:2016 (modèle à zone unique)
Q _{H,li}	[kWh/(m² a)]	Valeur limite pour les nouvelles constructions du besoin de chaleur pour le chauffage selon la SIA 380/1:2016

7.3.2 Indice Efficacité globale

L'indice pour l'efficacité globale R_{P,ref} se calcule comme suit:

$$R_{P,ref} = \frac{E_P}{E_{P,ref}} \cdot 100$$
 [%] Éq. 56


E _P	[kWh/(m² a)]	Valeur de projet selon Éq. 51
E _{P,ref}	[kWh/(m² a)]	Valeur de référence selon Éq. 54

7.3.3 Classification de l'enveloppe du bâtiment et de l'efficacité énergétique globale

Sur la base des indices qu'il présente pour son enveloppe $R_{H,ref}$ et son efficacité $R_{P,ref}$, le bâtiment est répertorié en classes (Tab. 41). Ce classement détermine l'étiquette.

Tab. 41 Classes selon la SIA 2031:2009 [3] resp. SIA 2031:2016 sans énergie positive [13].

Classe	R Minimum %	R Maximum %	Commentaire pour les classes énergétiques
Α	> 0	50	Bâtiment à très bonne performance
В	> 50	100	Bâtiments meilleurs que la référence
С	> 100	150	Bâtiments consommant plus que la référence.
D	> 150	200	Analyse recommandée
Е	> 200	250	Bâtiments nettement hors normes, méritant une
F	> 250	300	analyse visant à des améliorations.
G	> 300		

7.3.4 Classification des émissions directes de CO₂

La classification des émissions directes de CO₂ pour les producteurs de chaleur avec des agents énergétiques fossiles est effectuée selon le Tab. 42

Comme pour le calcul de la valeur limite des besoins de chaleur pour le chauffage selon la SIA 380/1:2016, la valeur limite de CO₂ pour le classement CO₂ est corrigée en température en fonction du site.

La correction de température F_{cor} (Éq. 57) n'est pas appliquée au calcul des émissions directes de CO_2 (Éq. 52). F_{cor} est appliqué pour adapter les limites des classes de l'échelle de CO_2 à la station climatique. La zone pour la classe B, par exemple, n'est pas définie de manière fixe [0-5] kg/(m²a). Pour la station climatique « Davos », par exemple, la zone pour la classe B, basée sur F_{cor} , est corrigée à [0-6,74].

Correction de température fcor

$f_{cor} = 1 + [(9.4^{\circ}C - \theta_{e,avg}) \cdot 0.06 K^{-1}]$	[-]	Éq. 57
--	-----	--------

$\theta_{e,avg}$ [°C]	Temp. annuelle moyenne du climat local
-----------------------	--

Tab. 42 Valeurs limites pour les classes de CO₂ selon le CECB.

Classe	Minimum [kg CO₂/(m² a)]	Maximum [kg CO₂/(m² a)]
А	0	0
В	> 0	5 * f _{cor}
С	> 5 * f _{cor}	10 * f _{cor}
D	> 10 * f _{cor}	15 * f _{cor}
Е	> 15 * f _{cor}	20 * f _{cor}
F	> 20 * f _{cor}	25 * f _{cor}
G	> 25 * f _{cor}	∞

8 Évaluation

8.1 Enveloppe du bâtiment

L'évaluation de l'enveloppe du bâtiment repose sur les valeurs U des différents éléments de construction. Il existe une distinction entre les bâtiments existants et les nouveaux bâtiments. L'évaluation s'appuie sur les valeurs cibles et les valeurs limites selon la SIA 380/1:2009.

Les sept catégories suivantes sont évaluées. Pour ce faire, les valeurs U sont pondérées en fonction de la surface (Éq. 58) avant d'être finalement classifiées selon Tab. 43 et Tab. 44

- Mu [Wa]: Mur contre extérieur / ≤ 2 m sous terre
- Mu c.n-c. [Wa g.u]: Mur contre non chauf. / > 2 m sous terre
- To [Da]: Toit contre extérieur / ≤ 2 m sous terre
- To c. n-c. [Da g.u.]: Plafond contre non chauf. / > 2 m sous terre
- Sol [Bo]: Sol contre extérieur / ≤ 2 m sous terre
- Sol c. n-c. [Bo g.u.]: Sol contre non chauf. / > 2 m sous terre
- Fe: Fenêtre contre extérieur

Exemple de calcul pondéré en fonction de la surface des valeurs U de différents murs extérieurs pour l'évaluation selon III. 2:

U_{Wa}		
$- U_{We1} \cdot A_{We1} + U_{We2} \cdot A_{We2} + U_{WD \le 2m} \cdot A_{WD \le 2m}$	$[W/(m^2 K)]$	Éq. 58
$- {A_{We1} + A_{We2} + A_{WD \le 2m}}$		

Uwe1, Uwe2	[W/(m ² K)]	Valeurs U de type mur extérieur 1 et 2
U _{WD≤2m}	[W/(m ² K)]	Valeur U du mur extérieur ≤ 2 m sous terre
AWe1, AWe2, AWD≤2m	[m²]	Surfaces des murs

Tab. 43 Évaluation de l'enveloppe du bâtiment pour les bâtiments existants

Évaluation	Élémer	Élément de construction contre locaux non chauffés, locaux chauffés			
	Toit (tous les types)	Fenêtres, portes mur contre terre perteur, fe Mu extérieur, mur contre terre pextérieur, élément de construction contre terre, ≤ 2 m			Plafond, sol Mur c. n-c.
Très bonne	≤ 0,15	≤ 1,1	≤ 0,18	≤ 0,21	≤ 0,2
Bonne	> 0,15 ≤ 0,25	> 1,1 ≤ 1,6	> 0,18 ≤ 0,25	> 0,21 ≤ 0,35	> 0,2 ≤ 0,35
Moyenne	> 0,25 ≤ 0,5	> 1,6 ≤ 2,1	> 0,25 ≤ 0,5	> 0,35 ≤ 0,5	> 0,35 ≤ 0,5
Mauvaise	> 0,5	> 2,1	> 0,5	> 0,5	> 0,5

Tab. 44 Évaluation de l'enveloppe du bâtiment pour les nouveaux bâtiments (année de construction : « année actuelle » jusqu'à « année actuelle moins trois ans ». Exemple : un bâtiment construit en 2016 serait encore classifié en tant que nouveau bâtiment en 2019)

Élément de construction contre extérieur ou à moins de 2 m sous terre				Élément de construction contre locaux non chauffés, locaux chauffés ou à plus
Toit (tous les types)	Fenêtres, portes Fe Fe	Mur extérieur, mur contre terre < 2 m Mu	Sol contre extérieur, élément de construction contre terre, ≤ 2 m	Plafond, sol Mur c. n-c.
≤ 0,09	≤ 1,00	≤ 0,11	≤ 0,11	≤ 0,15
> 0,09 ≤ 0,20	> 1,00 ≤ 1,30	> 0,11 ≤ 0,20	> 0,11 ≤ 0,20	> 0,15 ≤ 0,25 > 0,25
	(tous les types) To ≤ 0,09	(tous les types) Fe To ≤ 0,09 ≤ 1,00 > 0,09 > 1,00 ≤ 0,20 ≤ 1,30	Toit (tous les types) Fenêtres, portes Fe types) Mur extérieur, mur contre terre $< 2 \text{ m}$ To Mu ≤ 0,09 ≤ 1,00 ≤ 0,11 > 0,09 > 1,00 > 0,11 ≤ 0,20 ≤ 1,30 ≤ 0,20	Toit (tous les portes Fe types) Fe To Mur extérieur, mur contre terre $< 2 \text{ m}$ de construction contre terre, $\le 2 \text{ m}$ de construction contre terre, $\le 2 \text{ m}$ ≤ 0.09 ≤ 1.00 ≤ 0.11 ≤ 0.11 ≥ 0.09 > 1.00 > 0.11 > 0.01 > 0.01 > 0.01 ≤ 0.20

^{*}Jusqu'aux « fenêtres/portes », les valeurs indiquées correspondent aux valeurs cibles selon la SIA 380/1:2009

^{**}Jusqu'aux « sols/murs contre non chauf. », les valeurs supérieures correspondent à la valeur limite selon la SIA 380/1:2009

8.2 Installations techniques du bâtiment

Chauffage et eau chaude sanitaire

Pour l'évaluation des installations techniques, le rapport entre l'énergie finale pondérée (y c. l'énergie auxiliaire) et la chaleur utile est représenté et classifié selon Tab. 45 (III. 2). Le chauffage et l'eau chaude sont pris en considération de manières séparées (BHE Éq. 59, BWW Éq. 60).

Chauffage:

$$B_{HE} = \frac{\sum_{i=1}^{N_{WE}} (E_{HE,WEi} \cdot f_{CH,WEi}) + E_{HE,hilfs} \cdot f_{CH,el}}{Q_{H,eff} \cdot A_E}$$
 [-] Éq. 59

i	[-]	Index courant
N _{WE}	[-]	Nombre de producteurs de chaleur
fcн,wei	[-]	Facteur de pondération national de l'agent énergétique du producteur de chaleur selon Tab. 36
fсн,ei	[-]	Facteur de pondération national pour l'électricité selon Tab. 36
Eне,wei	[kWh/a]	Besoin en énergie finale pour le producteur de chaleur WE _i
E _{HE,hilfs}	[kWh/a]	Énergie auxiliaire (électricité) pour le chauffage
Q _{H,eff}	[kWh/(m ² a)]	Besoins de chaleur eff. pour le chauffage (attention à l'unité)
A _E	[m ²]	Surface de référence énergétique totale

Eau chaude:

$$B_{WW} = \frac{\sum_{i=1}^{N_{WE}} \left(E_{WW,WEi} \cdot f_{CH,WEi} \right) + E_{WW,hilfs} \cdot f_{CH,el}}{Q_W \cdot A_E}$$
 [-] Éq. 60

i	[-]	Index courant	
Nwe	[-]	Nombre de producteurs de chaleur	
fch,wei	[-]	Facteur de pondération national de l'agent énergétique du producteur de chaleur selon Tab. 36	
f _{CH,el}	[-]	Facteur de pondération national pour l'électricité selon Tab. 36	
Eww,wei	[kWh/a]	Besoin en énergie finale pour le producteur de chaleur WEi	
Eww,hilfs	[kWh/a]	Énergie auxiliaire (électricité) pour l'eau chaude	
Qw	[kWh/(m² a)]	Besoin en énergie utile standard pour l'eau chaude selon Tab. 40 (affectation mixte : valeur pondérée en fonction de la surface), attention à l'unité	
A _E	[m ²]	Surface de référence énergétique totale	

Électricité

La qualité de l'électricité est déterminée pour la classification dans III. 2 de la manière suivante :

- 1. Le rendement photovoltaïque imputable est déduit du besoin en électricité (E_v+E_{el,std})
- 2. Détermination E_{el,ref} (Tab. 40) pour toutes les affectations et, le cas échéant, élaboration d'une valeur globale pondérée en fonction de la surface
- 3. Élaboration du rapport issu des résultats du point 1 et 2 (attention à l'unité)
- 4. Évaluation de la valeur issue du point 3 selon Tab. 45

Tab. 45 Critères d'évaluation pour les installations techniques du bâtiment

Évaluation	Chauffage	Eau chaude sanitaire	Électricité
Très bonne	< 0.85	< 1.0	≤ 70 %
Bonne	≥ 0.85	≥ 1.0	≤ 100 %
Moyenne	≥ 1,00	≥ 1,25	≤ 130 %
Mauvaise	≥ 1,20	≥ 1,5	> 130 %

Normalisation du CECB Bibliographie

9 Bibliographie

[1] SIA 380/1, "Besoins de chaleur pour le chauffage (SIA 380/1:2016." Société suisse des ingénieurs et des architectes, Zürich, 2016.

- [2] SIA 380, Bases pour les calculs énergétiques des bâtiments. 2022.
- [3] Cahier technique SIA 2031, Certificat énergétique des bâtiments. 2009.
- [4] SIA 380, Bases pour les calculs énergétiques des bâtiments. 2015.
- [5] SIA 384/3, Installations de chauffage dans les bâtiments Besoins en énergie. 2013.
- [6] SIA 385/2, Installations d'eau chaude sanitaire dans les bâtiments Besoins en eau chaude, exigences globales et dimensionnement. 2015.
- [7] SIA 380/4, L'énergie électrique dans le bâtiment. 2006.
- [8] K. Wesselmann, "Manuel utilisateur de l'outil en ligne CECB -Manuel utilisateur CECB version 5.1, Korrex 5.1.2," Centrale d'exploitation CECB, Muttenz, 2019.
- [9] D. Wolff et al., "Einfluss der Verteilungsverluste bei der energetischen Modernisierung von Mehrfamilienhäusern. Analyse und Ableitung von Optimierungsmaßnahmen," Projekt im Auftrag des proKlima enercity-Fonds; Hannover/Braunschweig/Wolfenbüttel, 2012.
- [10] Minergie, "180201_Nachweisformular_Minergie_V2018.2.fr", 2018
- [11] Minergie, "Aide à l'utilisation Minergie/Minergie-P/Minergie-A V2019.1." Minergie, Bâle, 2019, [Online]. Disponible : www.minergie.ch.
- [12] "PVopti Outil de calcul d'autoproduction d'électricité," 2019. www.minergie.ch.
- [13] Cahier technique SIA 2031, Certificat énergétique des bâtiments. 2016.
- [14] J. Nipkow, "Der typische Haushalt-Stromverbrauch," Schweizerische Agentur für Energieeffizienz S.A.F.E, Zürich, 2013.
- [15] Cahier technique SIA 2024, " Données d'utilisation des locaux pour l'énergie et les installations du bâtiment." 2015.
- [16] SIA 387/4, Électricité dans les bâtiments Éclairage : calcul et exigences." 2017.

Normalisation du CECB Bibliographie

[17] ecobau, "Données des écobilans dans la construction 2009/1:2022." www.kbob.ch.

- [18] EnDK, "Facteurs de pondération nationaux pour l'évaluation des bâtiments." www.endk.ch, 2017.
- [19] C. Gross, "Fiche d'information: Facteurs d'émission de CO₂ pour l'établissement de rapports par les cantons" Département fédéral de l'environnement OFEV 2018, [Online]. Disponible: www.bafu.admin.ch.
- [20] S. Gasser, "Strommodell für Zweckbauten." elight GmbH pour Minergie, Bâle, 2018.

10 Symboles, unités et notions

Symbole	Unité	Notions
а	m	Rayon interne de la conduite (rayon interne du tuyau)
AE	m²	Surface de référence énergétique totale: $A_E = \Sigma$ $A_{E,Nutz,n}$
$A_{E,Ber}$	m ²	Surface de référence énergétique de chaque zone approvisionnée
$A_{E,Nutz,n}$	m^2	Surface de référence énergétique de l'utilisation n
A _{Nutz,Bel}	m^2	Surface pour l'éclairage, pour l'utilisation sélectionnée
A _{Nutz,K+E}	m^2	Surface pour les petits appareils et l'électronique, pour l'utilisation sélectionnée
Aavr	m^2	Surface moyenne d'isolation de l'accumulateur
$A_{P,std,Nutz,n}$	m ² /P	Données d'utilisation standard pour les surfaces par personne selon la SIA 380/1 conformément à l'utilisation n
Awe1/2, Awd≤2m,	m^2	Surfaces Mur extérieur
BHE, BWW	-	Rapport Énergie finale pondérée (y c. énergie auxiliaire) avec chaleur utile Chauffage et ECS
C, Cstu	-, kW/K	Coefficients
d	m	Diamètre
d sток,wd	m	Épaisseur de l'isolation thermique de l'accumulateur
$DG_{WEi,j}$	-	Taux de couverture du producteur de chaleur WEi dans la zone approvisionnée j
Dimwei	-	Facteur de surdimensionnement du producteur de chaleur
E _{B+G}	kWh/a	Besoin en électricité pour les équipements d'exploitation et les appareils
EBasisbedarf,Bel	kWh/(m² a)	Besoin de base en électricité Éclairage en relation avec l'utilisation
EBasisbedarf,K+E	kWh/(m² a)	Besoin de base en électricité Petits appareils + électronique en relation avec l'utilisation
E _{Bel}	kWh/a	Besoin en électricité pour l'éclairage
E _{C,Nutz}	kWh/a	Besoin en électricité pour le froid
Eco ₂	kg/(m²a)	Émissions de CO ₂
Етнде	kg/(m²a)	Émissions de gaz à effet de serre
E _{el,anr}	kWh/a	Quantité imputable d'électricité produite sur place
E _{el,std} , E _{el,std,Nutz}	kWh/a	Somme totale des besoins en électricité, besoin en électricité par utilisation
E _{el,ref}	MJ/a	Besoin en électricité Valeurs standard

E _{G+I}	kWh/a	Besoin en électricité pour les appareils et les installations
E _{GasKB} , E _{GasK} , E _{GasB} ,	kWh/a	Besoin en énergie Gaz naturel pour plaques de cuisson et four
EHE,WEI, EHE,WEI,hilfs, EHE,hilfs	kWh/a	Énergie finale et énergie auxiliaire Chauffage pour producteur de chaleur WE _i , énergie auxiliaire totale
E _{hu,Nutz}	kWh/a	Besoin en électricité pour la climatisation et l'humidification
Ек+Е	kWh/a	Besoin en électricité pour les petits appareils et l'électronique
E _P , E _{P,ref}	kWh/a	Valeur de projet et valeur de référence Efficacité des bâtiments
E _{PV}	kWh/a	Produit de l'installation photovoltaïque
E _{Qualität,G+I}	kWh/a	Besoin en électricité en relation avec la qualité pour les appareils et les installations
E _{spez,Nutz}	kWh/(m² a)	Besoin en électricité spécifique à l'utilisation
Ev, Ev,eff,Nutz, Ev,std,Nutz, Ev,Nutz	kWh/a	Besoin en électricité pour la ventilation: somme, autres installations de ventilation, petites installations avec valeurs standard, ventilation + protection contre le gel
PA	-	Part d'autoconsommation
Eww,wEi, Eww,wEi,hilfs, Eww,hilfs	kWh/a	Énergie finale et énergie auxiliaire Eau chaude pour producteur de chaleur WE _i , énergie auxiliaire totale
$E_{W,az,j}$	kWh/a	Besoin en électricité Circulation
Ew,ah	kWh/a	Besoin en électricité Bande chauffante
$E_{W,a,j}$	kWh/a	Besoin en électricité pour pompes dans la zone approvisionnée j
Еwкк	kWh/a	Produit de la cogénération / du CCF
EACE	kWh/a	Besoin en électricité pour autres consommateurs
f _b	-	Facteur d'occupation
fch, fch,we, fch,el, fch,öl, fch,Erdgas	-	Facteur de pondération national: correspondant à l'agent énergétique du producteur de chaleur, électricité, mazout, gaz naturel
f _{cor}	-	Correction de température
fco2	kg/kWh	Facteurs CO ₂
f _{H,STOk,wb}	-	Facteur pour la qualité d'exécution des raccordements de l'accumulateur.

fh,wei,stok	-	Facteur pour l'attribution de l'accumulateur de chauffage k au producteur de chaleur WE _i .
fH,WEi,STOk,Is	-	Facteur pour la part des déperditions de l'accumulateur de chauffage k pour le producteur de chaleur WE _i .
fнв	-	Facteur bande chauffante
F _{corr}	m/h	Facteur de correction des unités
f _{Netz}	-	Part imputable de l'injection dans le réseau
fQualität,Bel, fQualität,B+G	-	Facteur visant l'échelle des besoins de base sur la qualité sélectionnée: Éclairage, équipements d'exploitation+appareils
f sток,н D	-	Facteur pour le rapport entre la hauteur et le diamètre de l'accumulateur
fw,stok,wb	d/a	Facteur pour la qualité d'exécution des raccordements de l'accumulateur.
f _{WE,a}	-	Facteur pour l'énergie auxiliaire du producteur de chaleur
$f_{WE,ae}$	-	Facteur pour le groupe auxiliaire
f _{WE,af}	-	Facteur pour la chaudière
fwE,ak	-	Facteur pour le producteur de chaleur uniquement pour le chauffage ou uniquement pour l'eau chaude
f _{WE,au}	-	Facteur pour la pompe de circulation
fww,dis,hor,ls,j	-	Facteur pour l'emplacement des conduites de distribution horizontales d'eau chaude dans la zone j
fww,mit, fww,ohne	-	Part de lave-linge avec/sans raccordement à l'eau chaude sur la somme totale des lave-linge
fww,rück,ls,WEi	-	Facteur pour la répartition des déperditions récupérables sur le producteur de chaleur i
fww,wei,stok	-	Facteur pour l'attribution de l'accumulateur de chauffage k au producteur de chaleur $WE_{\rm i}$
fww,wei,stok,Is	-	Facteur pour la part des déperditions de l'accumulateur d'eau chaude k pour le producteur de chaleur WE _i
h	$W/(m^2 K)$	Coefficient de transmission de chaleur
i	-	Index courant pour le producteur de chaleur, $i = 1$ N_{Ber}
j	-	Index courant pour les zones approvisionnées, j = 1 Nwe
k	-	Index courant pour les utilisations des locaux, $k = 1 \dots N_{RNutz}$, index courant pour l'accumulateur, $k = 1 \dots N_{STO}$
k _{GHG}	kg/kWh	Facteur des émissions de gaz à effet de serre

K	1/m	Paramètre pour le moteur du ventilateur
L		Longueur du réseau de distribution horizontal et
L	m	vertical
Leire	m/m ²	Longueur moyenne des conduites de distribution de chaleur rapportée à la surface de référence énergétique
n	-	Index courant pour utilisations, n = 1 N_{Nutz}
n _{cp}	-	Nombre de raccords conducteurs d'eau
N _{Ber}	-	Nombre de zones approvisionnées
NGeräte, NGeräteK/B	-	Nombre d'appareils, nombre de plaques de cuisson et de fours
N _{Nutz}	-	Nombre d'affectations (zones dans le bâtiment)
NRaumPers	-	Nombre de pièces avec air pulsé (habitat) ou nombre de personnes (administration/école)
N_{RNutz}	-	Nombre d'affectations des pièces
N_{Typ}	-	Nombre de types d'appareil
N_{We}	-	Nombre de producteurs de chaleur
N_{Whg}	-	Nombre d'appartements dans le bâtiment
N_{Zimmer}	-	Nombre moyen de pièces dans les appartements
Pel	kW	Puissance de l'appareil
t _{be,dis}	h/a d/a	Durée d'exploitation de la distribution de chaleur ou de l'accumulateur d'eau chaude avec valeur standard t _{be,dis} = 365 jours par année
<mark>tel,dis</mark>	<mark>h/a</mark>	Durée d'exploitation de la distribution de chaleur pour le calcul de l'énergie auxiliaire
$\begin{array}{l} Q_{th,std,Nutz},\; Q_{th,std,eff,Nutz},\\ \\ Q_{th,eff,Nutz} \end{array}$	m ³ /(h m ²)	Débit d'air neuf efficace thermiquement en fonction de la surface et de l'affectation : standard, pour les petites installations avec valeurs standard, pour les autres installations de ventilation
QH,eff, QH,li	kWh/(m² a) MJ/(m² a)	Besoin de chaleur pour le chauffage : effectif, valeur limite pour les nouvelles constructions
Q Heizband	<mark>kWh/a</mark>	Déperditions récupérables de la bande chauffante
$Q_{I,P}$	kWh/(m² a)	Émissions de chaleur par les personnes selon la SIA 380/1
QP,std,Nutz,n	W/P	Données d'utilisation standard pour l'émission de chaleur par les personnes selon la SIA 380/1 conformément à l'affectation n
$Q_{\text{WW,WEi,sto,Is}}$	kWh/a	Déperditions thermiques d'un producteur de chaleur WE _i pour l'eau chaude
Qw	kWh/(m² a) MJ/(m² a)	Besoin en énergie utile pour l'eau chaude

Qw_spül, Qww_spül	kWh/(m² a)	Besoins de chaleur supplémentaires/Besoins en énergie utile supplémentaires pour l'eau chaude d'un lave-vaisselle
Q_{W_Wasch},Q_{ww_Wasch}	kWh/(m² a)	Besoins de chaleur supplémentaires/Besoins en énergie utile supplémentaire pour l'eau chaude d'un lave-linge
$Q_{x,y,\text{dis},\text{ls},z,j}$	kWh/(m² a)	Déperditions liées à la distribution de la chaleur
$Q_{HE,WEi,dis,ls,hor,j}$		dans la zone approvisionnée j pour :
$Q_{WW,dis,ls,h,j}$		chauffage, conduites horizontales, (actif)
$Q_{WW, dis, ls, v, j}$		eau chaude, conduites horizontales,
$Q_{WW, dis, ls, hor, j}$		eau chaude, conduites verticales,
Qww,dis,ls,ver,j		eau chaude, conduites horizontales (actif)
$Q_{WW,dis,ls,j}$		eau chaude, conduites verticales (actif)
		Somme des déperditions actives des conduites pour l'eau chaude
Qww,rück,ls	kWh/a	Déperditions récupérables d'eau chaude sanitaire
$Q_{\text{HE,STOk,Is,}}Q_{\text{WW,STOk,Is}}$	kWh/a	Déperditions liées à l'accumulateur : chauffage, eau chaude sanitaire
Q ₈₀ %WW,WEi,rück,Is	kWh/a	Déperditions récupérables d'eau chaude sanitaire sur le producteur de chaleur WE _i
r _{ws}	m	Épaisseur de la paroi de la conduite
$R_{H,ref}$, $R_{P,ref}$	-	Indice Besoin de chaleur pour le chauffage, indice Efficacité globale
SD	m	Épaisseur de l'isolation
$S_{Nutz,n}$	°C	Paramètre des conditions normales d'utilisation n
tc	d	Longueur des étapes de calcul en jours
$t_{\text{be,dis}}, t_{\text{be,Zirk}}, t_{\text{be,WVA}}, t_{\text{be,V}}$	h	Durée de l'exploitation Distribution de chaleur, circulation, appareils, autres installations de ventilation
tP,std,Nutz,n	h/d	Données d'utilisation standard pour le temps de présence par jour selon la SIA 380/1 conformément à l'affectation n
U _{WE1} / ₂ , U _{WD≤ 2m} , U _{H,} STOk	W/(m ² K)	Valeurs U des murs extérieurs, d'enveloppe d'accumulateur
V _H ,stok	1	Volume de l'accumulateur
V'Luft,Nutz	m³/h	Débit d'air de l'affectation
V'Nenn,Nutz	m³/h	Débit volumique nominal de l'affectation
V'Nenn,Nutz,eff	m³/h	Débit volumique nominal effectif de l'affectation
V'min.Nutz	m³/h	Débit volumique minimal de l'affectation
Vo	m ³ /(h m ²)	Débit volumique d'infiltration pondéré en fonction de la surface
W _{pipe}	m K/W	Résistance des conduites contre la déperdition

X,y,Z	-	Emplacement prévu pour le chauffage/l'eau chaude, le producteur de chaleur et orientation des conduites
Δθ	K	Différence de température
η_{g}	-	Taux d'utilisation
П НЕ,WEI, П WW,WEI	-	Rendement/coefficients de performance annuels des producteurs de chaleur WE _i pour le chauffage/l'eau chaude (base HI)
ηwт	-	Récupération de chaleur de l'échangeur de chaleur
	W/(m·K)	Conductivité thermique
$ heta_{ ext{e,avg}}$	°C	Température annuelle moyenne
θнк	°C	Température moyenne du circuit de chauffage
θ_{U}	°C	Température de l'air ambiant
θ_{W}	°C	Température de l'eau chaude
θ w,stok,	°C	Température d'accumulateur