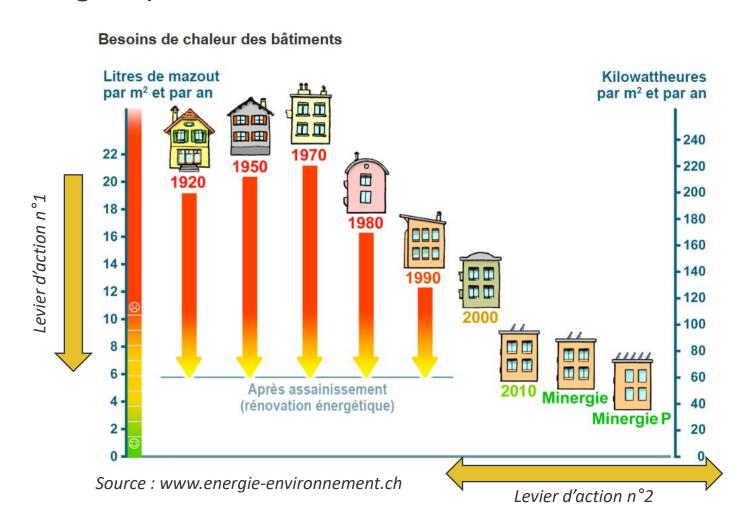
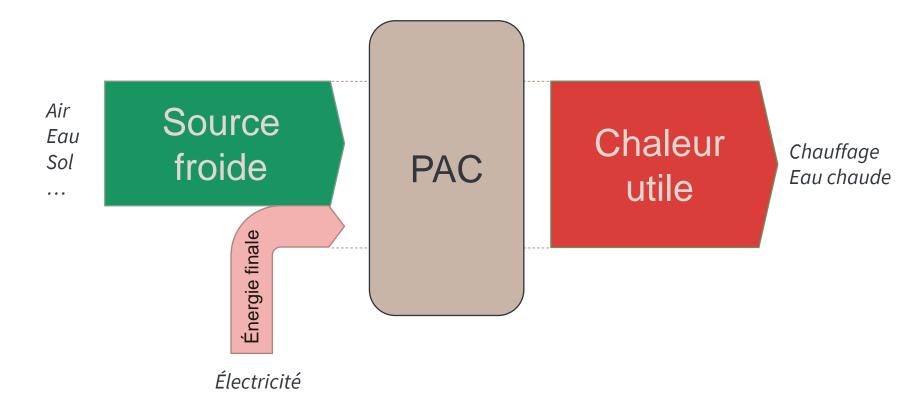

Buts de la présentation

- Présentation générale sur la place des pompes à chaleur dans l'assainissement énergétique des bâtiments
- Quelque notions techniques à connaitre
- Présentation de 3 cas concrets (état initial)
- Travail en groupes
- Présentation des résultats des discussions
- Présentation des solutions réellement mises en œuvre
- Discussion finale

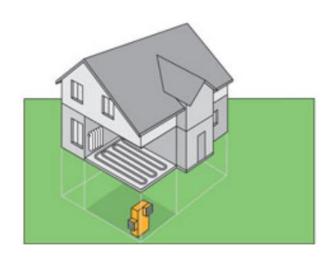


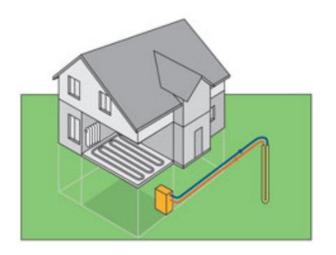
Source: OFS – Bâtiments d'habitation



Avantage de la pompe à chaleur dans ce contexte :

- Peu d'énergie finale consommée pour couvrir les besoins

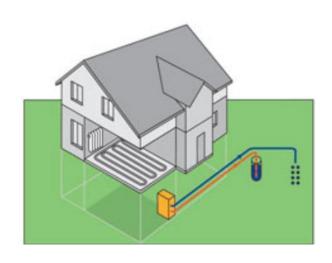


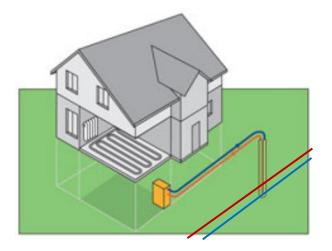

Solutions les plus courantes :

PAC air/eau

- Compacte intérieure
- Compacte extérieure
- Split

PAC sol/eau (géothermie)

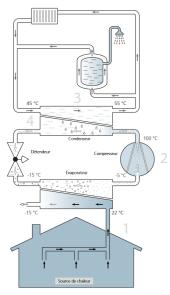


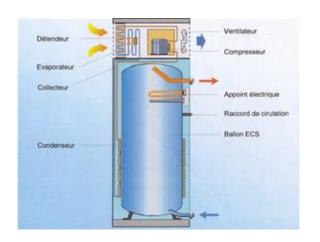

Solutions moins courantes:

PAC eau/eau

- eaux de surface
- eaux souterraines

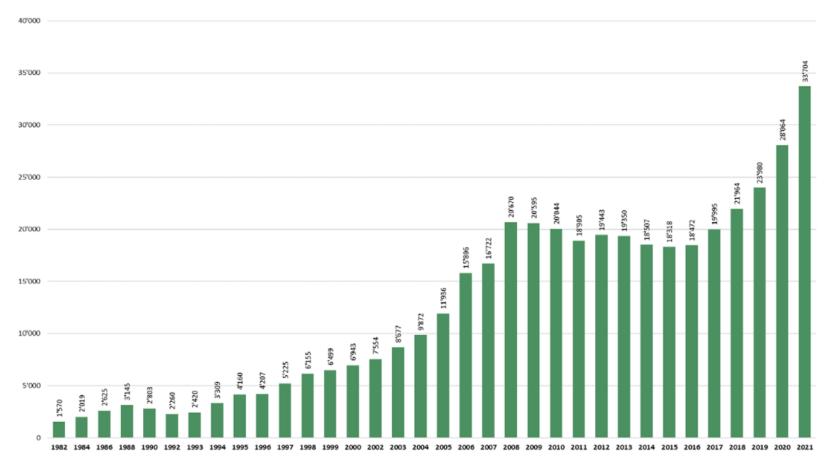
PAC sur réseau basse enthalpie

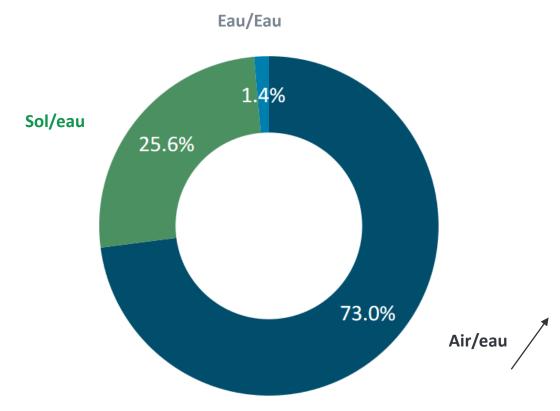




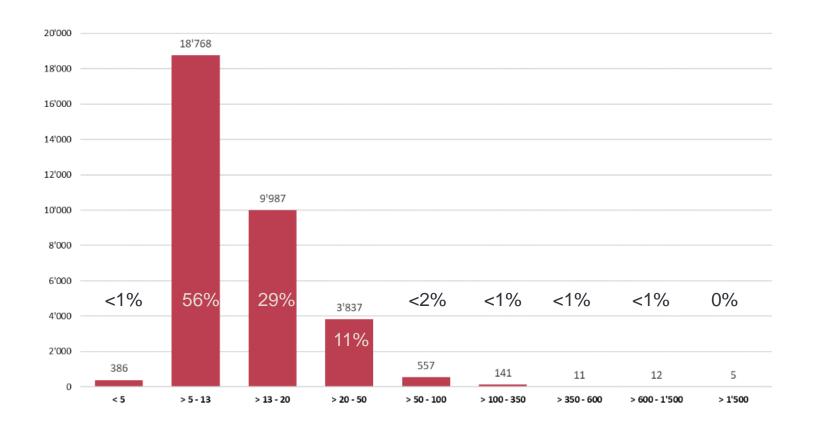
Solutions « partielles »:

PAC sur air extrait


Boilers thermodynamiques


Évolution du marché des pompes à chaleur (nombre de ventes) :

Source: www.fws.ch


Part de pompes chaleur vendues par type :

Source: www.fws.ch

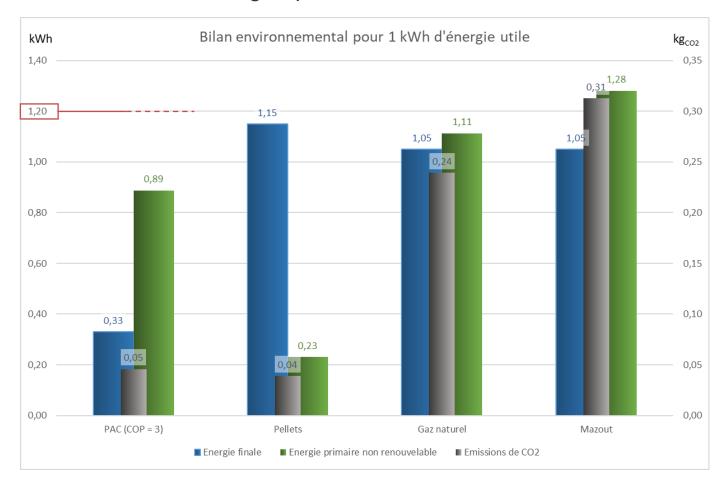
Nombre de ventes par puissances :

Source: www.fws.ch

Dans le CECB®plus :

Variante PAC:

Variante pellets:

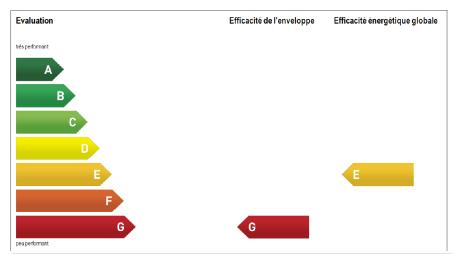

peu performant

Données	Standard	Actuel	
(Valeurs calculées, basées sur Q,eff)	22	00	114/1// 2 1
Efficacité de l'enveloppe du	38	38	kWh/(m² a)
bâtiment:			
Efficacité énergétique globale:	81	64	kWh/(m² a)
Énergie livrée nette annuelle			
(Valeurs calculées, basées sur Q,eff)			
Électricité:	6'496	6'496	kWh/a
Chauffage:	4'979	4'979	kWh/a
Eau chaude:	2'636	2'636	kWh/a
Gain PV:	-2'600	-5'000	kWh/a
Gain CCF	0	0	kWh/a
5 1 1 1000	_	_	
Equivalent-CO2	7	5	kg/(m² a)

Données (Valeurs calculées, basées sur Q,eff)	Standard	Actuel	
Efficacité de l'enveloppe du bâtiment:	38	38	kWh/(m² a)
Efficacité énergétique globale:	62	45	kWh/(m² a)
Énergie livrée nette annuelle (Valeurs calculées, basées sur Q,eff)			
Électricité:	7'009	7'009	kWh/a
Chauffage:	13'684	13'684	kWh/a
Eau chaude:	3'842	3'842	kWh/a
Gain PV:	-2'600	-5'000	kWh/a
Gain CCF	0	0	kWh/a
Equivalent-CO2	5	3	kg/(m² a)

Comparaison avec les autres vecteurs énergétiques :

Avantages de la pompe à chaleur en rénovation :


- technologie éprouvée
- forte réduction de la consommation d'énergie finale (E_{f.hww})
- forte réduction des émissions de gaz à effet de serre (sous réserve d'étanchéité du circuit)
- maintenance annuelle simple
- synergies possibles avec le photovoltaïque

Difficultés rencontrées en rénovation :

- accès aux sources froides
- hauts niveaux de température
- stockage
- grandes puissances
- altitude/humidité (dégivrage)
- acoustique
- renouvèlement d'air en chaufferie (sécurité gaz)

Cas particulier des grandes puissances (exemple) :

Données (valeurs calculées, Qh,eff)								
Efficacité de l'enveloppe:	kWh/(m²a)							
Efficacité énergétique globale:	252	kWh/(m²a)						
Equivalent-CO2:	58	kg/(m²a)						
Besoin énergétique								
(Consommation moyenne mesurée)								
Energie auxiliaire et ménagère:	19'020	kWh/a						
Chauffage:	151'610	kWh/a						
Eau chaude:	17'450	kWh/a						

Généralités	
Surface de référence énergétique [m²]	1'047
Nombre d'appartements [-]	6
Nbre moyen de pièces [-]	≤ 4.5
Etages entiers [-]	3
Coefficient d'enveloppe [-]	1.22

Puissance:

- actuelle 80kW
- 60kW après travaux

Cas particulier des grandes puissances (exemple) :

	Estimation investissements selon les variantes								
		Variante 1 Chaudière pellet seule	Variante 2 Chaudière pellet + solaire Th	Variante 3 Chaudière gaz + PAC air/eau	Variante 4 PAC air/eau				
1,1	Démontage	10 000	10 000	10 000	10 000				
1,2	Production de chaleur	45 000	45 000	75 000	152 500				
1,3	Solaire thermique	0	25 000	0	0				
1,4	Accumulateur ECS	20 000	20 000	20 000	0				
1,5	Maçonnerie / Silo	15 000	15 000	5 000	0				
1,6	Divers raccordements, mise en place	15 000	15 000	15 000	15 000				
	Total HT	105 000	130 000	125 000	177 500				
	TVA 7.7%	8 085	10 010	9 625	13 668				
	Total TTC	113 085	140 010	134 625	191 168				

Cas particulier des grandes puissances (exemple) :

	Variante 1 Chaudière pellet seule	Variante 2	Variante 3	Variante 4
	Scule	Chaudière pellet + solaire Th	Chaudière gaz + PAC air/eau	PAC air/eau
Besoin de chaleur annuel [kWh]	219 055	214 184	117 824	117824
COP PAC ou rendement chaudière	85%	85%	95% et COP 2,4	COP 2,4
Conso (kWh élect. ou tonne pellet)	38,5 tonnes	37,6 tonnes	6'300 m³ gaz + 47'000 kWh	74'000 kWh
I) Coût énergétique annuel				
gaz (0,095/kWh)			6770	
electricité (0.22/kWh)			10 427	16358
pellet (380/tonne)	17 806	17 410		
II) Couts d'entretien				
Maintenance et entretien	1 300	1 500	1 000	1 000
Fourniture petit matériel	65	80	80	80
I) + (II) Total coût énergétique annuel	19 171	18 990	18 276	17 438
III) Annuité d'emprunts, intérêt 2%,	7 448	9 222	8 867	12 591
mortissement sur 20 ans				
OTAL GENERAL (I) + (II) + (III), CHF/an	26 619	28 211	27 144	30 029

Cas particulier des grandes puissances (exemple) :

Ils nous ont fait confiance

Chaleur renouvelable Bâtiment

Route de St. Julien

- Le projet
 - Besoin de rénover la chaufferie

La proposition de SIG

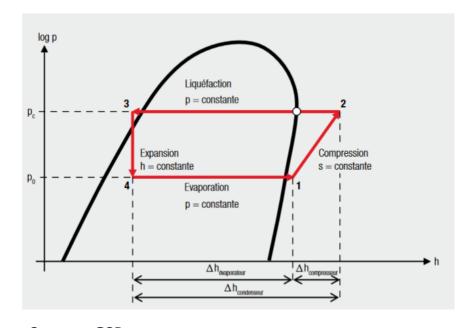
- Vente de chaleur en contracting grâce à la solution « Chaleur renouvelable Bâtiment » intégrant :
 - Installation de 2 PAC pour une puissance de 250 kW

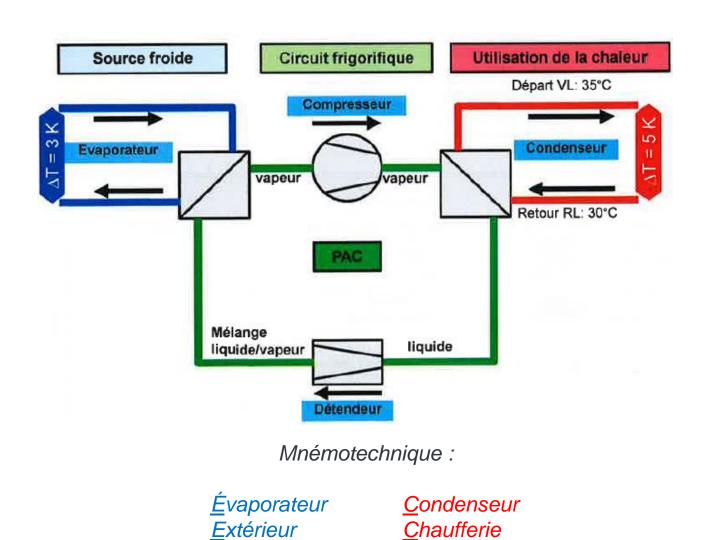
Ce qui a intéressé le client

- Volonté de pérenniser son parc avec une solution de chaleur renouvelable tout en participant à un projet innovant
- Tester la solution 100% renouvelable sur un bâtiment peu isolé
- Être en conformité avec les contraintes réglementaires

Chiffres clés :

- Ancienne installation Mazout : 640 kW 100% énergie fossile
- Nouvelle installation: 100% renouvelable avec les PAC
- Baisse de l'IDC estimée : ~20% (589 MJ/m².an vs 460MJ/m².an)
- Bilan émissions de CO²/an : Actuelle 1.87tCO₂/an vs ancien 192tCO2/an


Installations PAC - Rte de St. Julien


Quelques notions

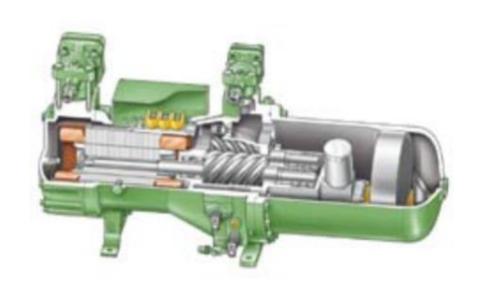
CECB Quelques notions

Les principaux composants :

Source: GSP

<u>Extérieur</u>

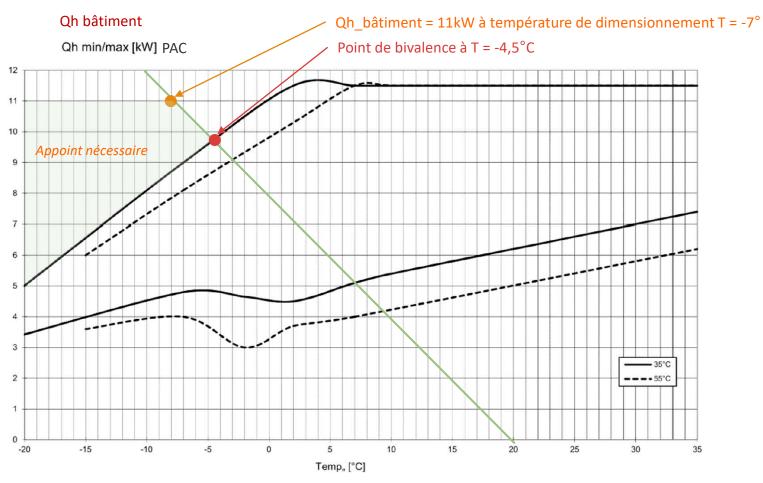
CECB Quelques notions


Les principaux types de compresseurs :

Spiral/Scroll/Palette

Compact

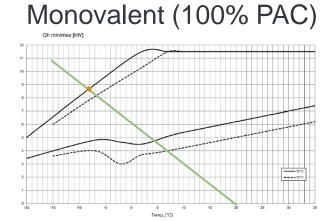
Vis

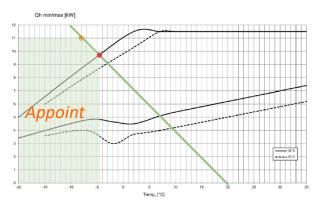


Puissances élevées

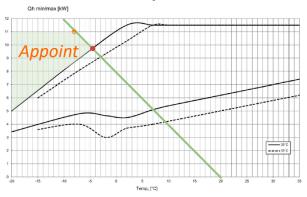
Source: GSP

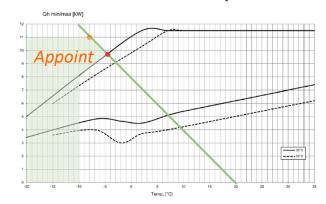
Quelques notions


Point de bivalence :


Exemple pour Alpha Innotec LWCV 122R3

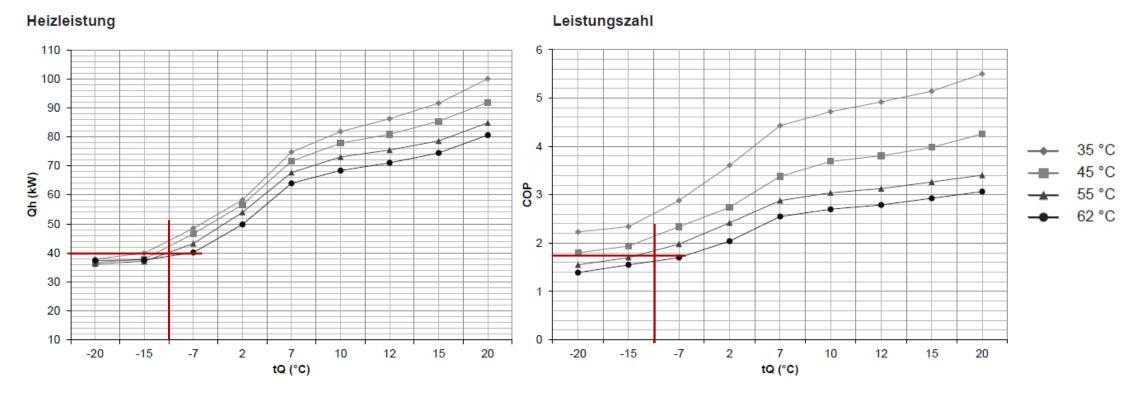
Quelques notions


Modes de fonctionnement :


Bivalent alternatif

Bivalent parallèle

Bivalent alternatif-parallèle


Exemple pour Alpha Innotec LWCV 122R3

CECB Quelques notions

Exemple de l'immeuble à la Chaux-de-Fonds (besoins 60kW chauffage) :

Hoval Belaria® dual AR (60)

Volllast (2-stufig)

=> 2 PACs pour couvrir les besoins en chauffage et eau chaude

COP/COPa/SCOP:

- COP : rapport électricité consommée/chaleur fournie pour un écart et un niveau de températures donnés
- COPa : performance spécifique sur l'ensemble de l'année
- SCOP: performance standard sur une saison

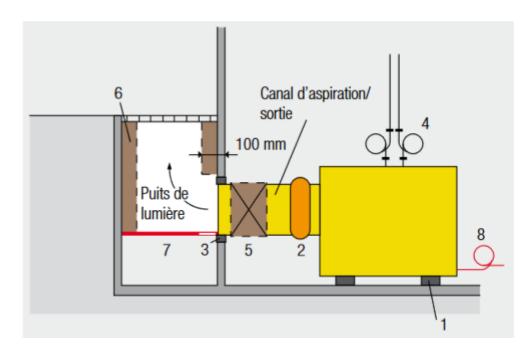
Nom de l'appai	reil			L'	WCV 82R1/3
Type de pompe à chaleur	Air/Eau interieu	ur			
Conformité					CE
Caractéristiques de	Puissance calc	orifique / COP pour			
performance	A7/W35	Point normalisé selon EN14511	Fonc. à pleine charge	kW ı	7,0 1
	A2/W35	Point service selon EN14511	Fonc. à pleine charge	kW ı	7,0 1
	A-7/W35	Point service selon EN14511	Fonc. à pleine charge	kW 1	6,0 1 3,0
	A-7/W55	Point service selon EN14511	Fonc. à pleine charge	kW ı	5,4 2,0
Caractéristiques de	Puissance de r	refroidissement / EER			
performance	A35/W18	Point normalisé selon EN14511	Fonc. à pleine charge	kW 1	6,0 1
	A35/W7	Point service selon EN14511	Fonc. à pleine charge	kW 1	pas possible
Caractéristiques de	Pdesign/SCOF				
performance SCOP	SCOP 35	Selon norme EN14825	Climat moyen (Europe)	kW ı	6,24 3,93
	SCOP 55	Selon norme EN14825	Climat moyen (Europe)	kW ı	5,65 2,97
Limites d'utilisation	Circuit de chau	ıffage chez A-7°C		°C	20¹ - 58²
	Source de cha	leur		°C	-22 – 35
	Points supplén	nentaires de fonctionnement		°C	A0 / W60

Acoustique - formulaire PAC du Cercle Bruit (https://www.fws.ch/fr/nos-services/cercle-bruit/):

Données sur la pompe à chaleur air/eau (données techniques + plan de situation avec l'installation)					Données				
selon les normes EN 25	5 resp. EN 14511 (voi	ir www.wpz.cł	n)						constructeu
Fabricant					Puissance acoustique	e L _{wA}	5-	4 dBA	⊕ Lw A
Modèle / Type					Niveau sonore LpA			dBA	○ LpA
Puissance			12 k	W	à (distance) s ₁			m	·
Situation	a l'inté	rieur		à l'exté	érieur	systè	ėme split		
Puissance acous	tique à l'exté	rieur L _{wA}	(données con	structeur /	Wärmepumpen-Testzentrum wi	vw.wpz.ch)		54	dBA
Distance (s) Sour	rce - Récepte	ur (immeu	ble voisin	; maisoi	n plurifamiliale : sur l'im	meuble m	ême ; parcelle		
non construite : s	ur l'alignemer	nt)						6,5	m
			Г	Degré d	le sensibilité ———				
Valeurs de pla	nification (a	innexe 6	OPB) (DS II	(habitation) OS	S III (mixt	re)	45	dBA
Calcul du nivea	u d'évaluatio	n Lr au r	écepteur						
Facteurs de cori									
Directivité de		○ PAC	intérieure,	ouvertu	ıres à la façade (+ 6 dB)			
la source Dc		○ PAC	intérieure,	ouvertu	ıres près d'un angle ren	trant de f	açade (+ 9 dB)		
		PAC	extérieure	proche	de la façade (+ 6 dB)				
Niveau d'évalua	tion L _r							44,7	dBA
La valeur de plan	ification de	45	dBA est	respe	ctée.				

Nom de l'appa	areil		LWC 100					
Type de pompe à chaleur	ype de pompe à chaleur Air/Eau interieur							
Acoustique	Niveau de puissance acoustique selon ERP (EN12102) (entrée dans cercle bruit suisse)	dB(A)	54					
	Niveau de puissance acoustique max. en service de jour	dB(A)	54					
	Niveau de puissance acoustique max. en service reduction de nuit	dB(A)	54					

Acoustique - Principes :


- Déterminer le degré de sensibilité au bruit de la parcelle
- Déterminer la distance à la façade la plus exposée/parcelle vide

Source: SITN

Quelques notions

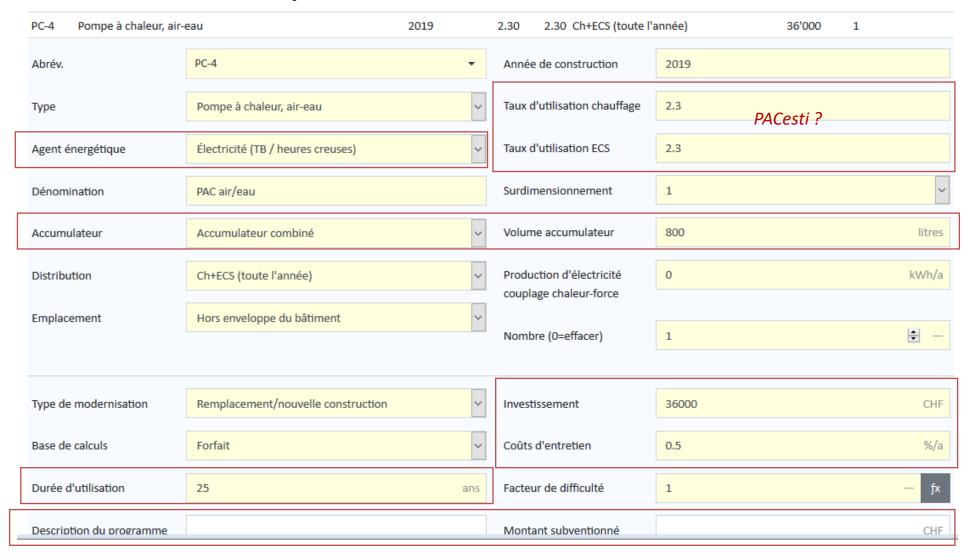
Acoustique - Mesures de réduction du bruit intérieur :

Source: GSP

- 1: Séparation des bruits solidiens entre la pompe à chaleur et le sol de la cave
- Séparation des bruits solidiens entre la pompe à chaleur et le canal (le soufflet ne doit pas être tendu)
- 3: Séparation des bruits solidiens entre le canal d'air et le bâtiment
- 4: Séparation des bruits solidiens entre la pompe à chaleur et les conduites de chauffage
- 5: Amortisseur de bruit à absorption dans les canaux d'air lors d'exigences plus élevées
- 6: Chicane avec chemisage absorbant
- 7: Amortisseur de bruit pour les basses fréquences lors d'exigences plus élevées (amortisseur de bruit à résonance)
- Séparation des bruits solidiens entre la pompe à chaleur et les raccords électriques

Source: «Isolation acoustique lors de l'installation de pompes à chaleur», éditeur GSP

CECB Quelques notions


Points d'attention

- Source froide : disponibilité, températures, capacités
- Besoins thermiques : températures, puissances (chauffage et ECS)
- Capacités de stockage : place disponible pour les stocks hydrauliques, chauffage de sol
- Emplacement des appareils : acoustique, esthétique
- Synergie avec les autres composants (photovoltaïque, thermique, ventilation, ...)
- Monitoring énergétique

CECB Quelques notions

Points d'attention dans le CECB®plus

Intégration du PACesti

Données concernant le bâtiment				
Station climatique:				Neuchâtel
Catégorie d'ouvrage				Habitat individuel
Surface de référence énergétique SRE	Ÿ	A _E	m ²	285
Besoins de chaleur pour le chauffage selon SIA 380/1		Q _{h,eff}	MJ/m2a	138
Déperditions par transmission selon SIA 380/1		Q_T	MJ/m2a	190
Déperditions par renouvellement d'air selon SIA 380/1		Q_V	MJ/m2a	68
Chauffage: pertes supplémentaires de distribution de chaleur			%	3%
Durée de coupure d'alimentation de la PAC			h/d	2
Puissance de chauffage nécessaire sans ECS à -5°C	valeur proposée:	6,2	kW	
Besoins de chaleur pour l'ECS selon SIA 380/1		Q_{ww}	MJ/m2a	60,0
Eau chaude sanitaire: pertes supplémentaires d'accumulation e	t de distribution		%	20%

Besoin en chaleur pour le chauffage

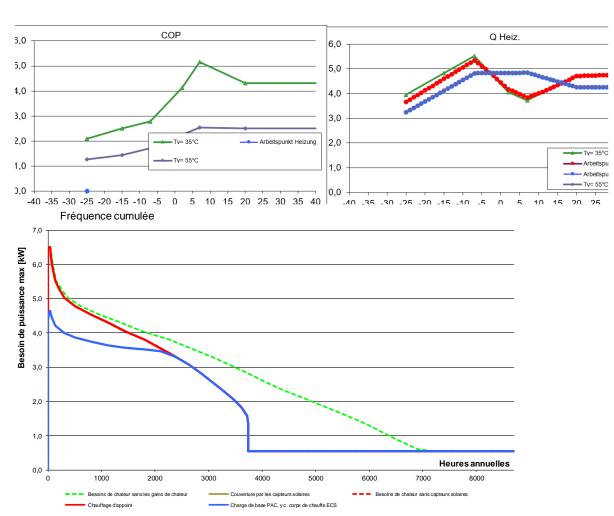
		État initial	Variante A	Variante B	Variante C
Besoin en chaleur de chauffage $\ensuremath{\overline{\beta}}$, effective	$Q_{h,eff}$	428.0	203.6	138.3	138.3 MJ/(m ² a)
Total des pertes de chaleur par transmission	Q_{T}	495.8	262.0	190.0	190.0 MJ/(m²a)
Pertes de chaleur par ventilation 🖗	Q_V	68.1	68.1	68.1	68.1 MJ/(m²a)

Intégration du PACesti

Report dans CECBplus:

Résultats				
Part d'énergie électrique pour le chauffage	ε =		kWh =	0
Part d'énergie électrique pour l'ECS	ε =	1,6%	kWh =	79
Pertes en mode chauffage (démarrage, accumulateur, etc.)		5%	Etah =	95%
Pertes en mode préparation d'ECS (démarrage, accumulateu	r, etc.)	6%	Etaw =	94%
Durée de fonctionnement de la nomne à chaleur			h/a	2 665
Part et COP annuel de la pompe à chaleur pour le chauffage	ε =	100,0%	JAZ _h =	3,67
Part et COP annuel de la pompe à chaleur pour l'ECS	ε =	98,4%	JAZ _{wv} =	2,88
COP annuel pour chauffage et ECS (COPa [ch+ECS])	y compris el. add.		-	3,36

Prestation de conseils – détection d'anomalies :


Résultats				
Part d'énergie électrique pour le chauffage	ε =	15,4%	kWh =	1 926
Part d'énergie électrique pour l'ECS $\epsilon =$		1,6%	kWh =	79
Pertes en mode chauffage (démarrage, accumulateur, etc.)		5%	Etah =	95%
Pertes en mode préparation d'ECS (démarrage, accumulateur, etc.)		6%	Etaw =	94%
Durée de fonctionnement de la pompe à chaleur			h/a	3 803
Part et COP annuel de la pompe à chaleur pour le chauffage	ε =	84,6%	JAZ _h =	3,82
Part et COP annuel de la pompe à chaleur pour l'ECS	ε =	98,4%	JAZ _{ww} =	2,28
COP annuel pour chauffage et ECS (COPa [ch+ECS])	y compris el. add.		-	2,52

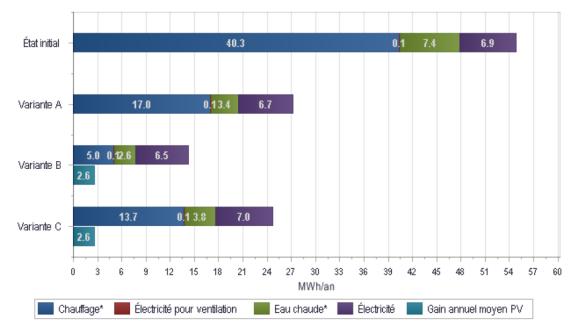
CECB Quelques notions

Exploration du PACesti (feuilles masquées)

« WP_BIN »:

« Graph »:

Quelques notions


Rapport de conseils

Energie finale:

7 Aperçu énergie finale

Ci-dessous, la répartition de la consommation énergétique par poste et pour chaque variante proposée en comparaison avec l'état initial.

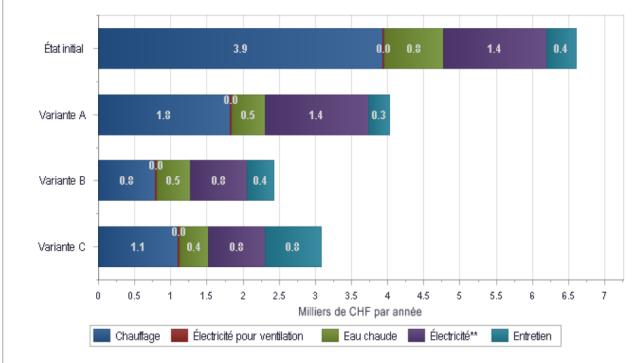
7.1 Avec données d'utilisation standard:

^{*} Le besoin couvert par l'énergie thermique solaire est déjà déduit

La variante B est la plus efficace. La variante B apporte une amélioration supplémentaire en termes de réduction de la consommation énergétique comparativement à la variante A.

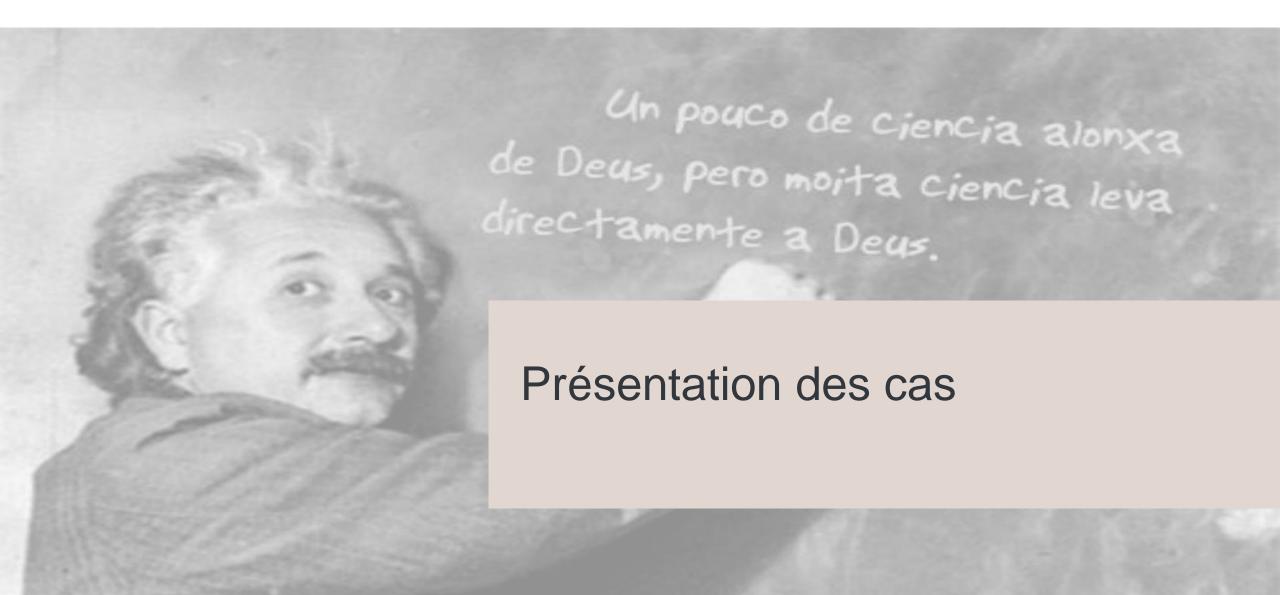
Les besoins de chauffage de la variante B intègre le COP de la pompe à chaleur.

Quelques notions


Rapport de conseils

Coût énergétiques :

8 Coûts énergétiques annuels


Ci-dessous, la répartition de la dépense énergétique par poste et pour chaque variante proposée en comparaison avec l'état initial.

8.1 Avec données d'utilisation standard:

^{**} Le besoin couvert par l'énergie thermique solaire ainsi que la production totale d'électricité sont déjà déduits



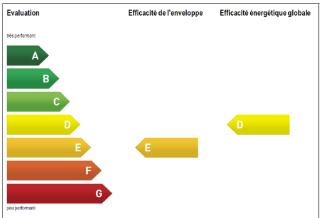
À vous de jouer!

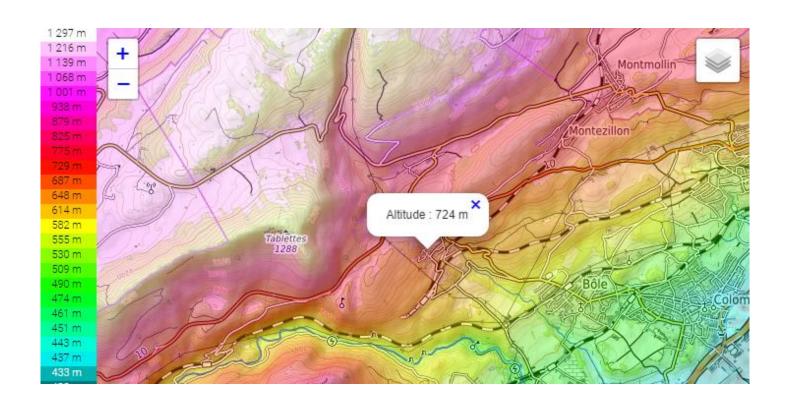
- Constituez des groupes de travail :
 - 4 experts par groupe
 - 1 groupe = 1 projet + 1 rapporteur
- L'orateur joue le rôle du maitre de l'ouvrage
- Proposez des scénarios de rénovation (« variantes » CECB®Plus)
- Au moins un scénario doit intégrer une pompe à chaleur
- Pour chaque cas, un des groupes présente le résultat des discussions de manière argumentée (processus de décision) au MO
- Discussion ouverte ; avis des autres groupes

CECE Solutions retenues par les maîtres d'ouvrages et mises en œuvre

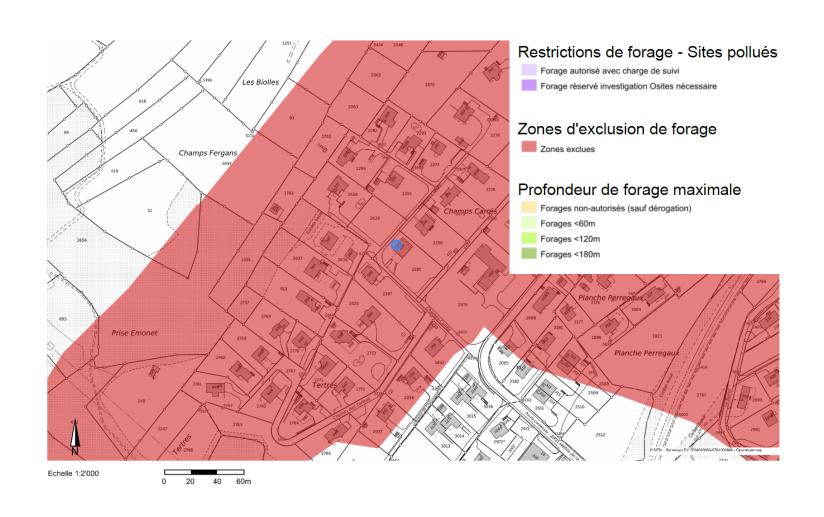
Avertissement

- Les projet présentés ci-après sont ceux qui ont été effectivement choisis par les maitres d'ouvrage et mis en œuvre
- Ils ne constituent en aucun cas des solutions « idéales »
- Ils ne constituent en aucun cas des « modèles universels »
- Ils sont juste le fruit de choix réfléchis en fonction des critères propres à chaque maitre d'ouvrage à une époque donnée
- Il faut cependant souligner que dans les 3 cas les propriétaires étaient satisfaits des travaux

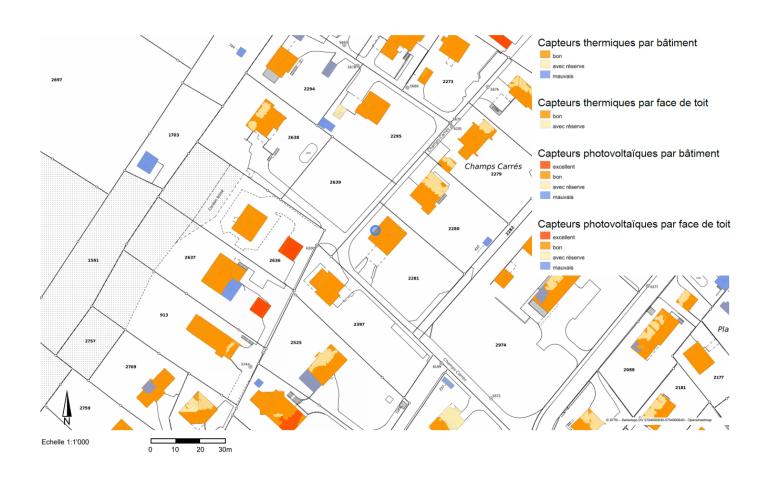



Etat physique et énergétique

- Maison individuelle
- 1979
- SRE = 160 m^2
- 2 habitants
- Chambrelien (Rochefort, NE)
- Orientation Sud-Est
- Altitude 724 m
- Chauffage et ECS au mazout (d'origine)
- Cheminée de salon peu utilisée
- Tuiles fibrociment à remplacer
- Façades ossature bois isolées (10 cm)
- Fenêtres à 60% déjà remplacées
- Entretien globalement bien suivi



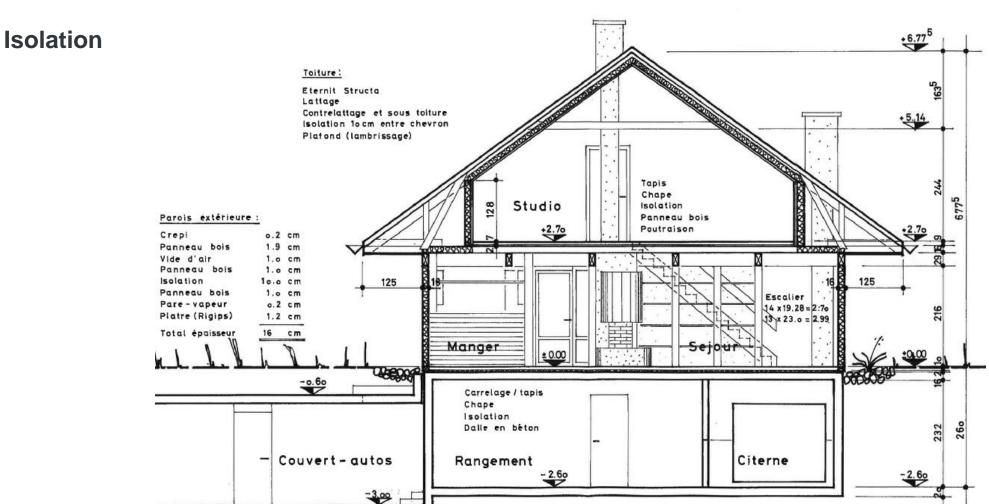
Exposition/altitude



Sous-sol

Potentiel solaire

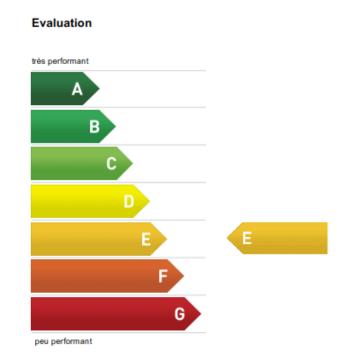
Toitures


Façades

Nord-Ouest

Isolation

Toiture: $U = 0.6 \text{ W/m}^2\text{K}$


 $U = 0.4 \text{ W/m}^2\text{K}$ Murs c/ext.:

Fenêtres DV (40%): $U_w = 2.8 \text{ W/m}^2\text{K}$

Fenêtres TV (60%): $U_{w} = 1.0 \text{ W/m}^{2}\text{K}$

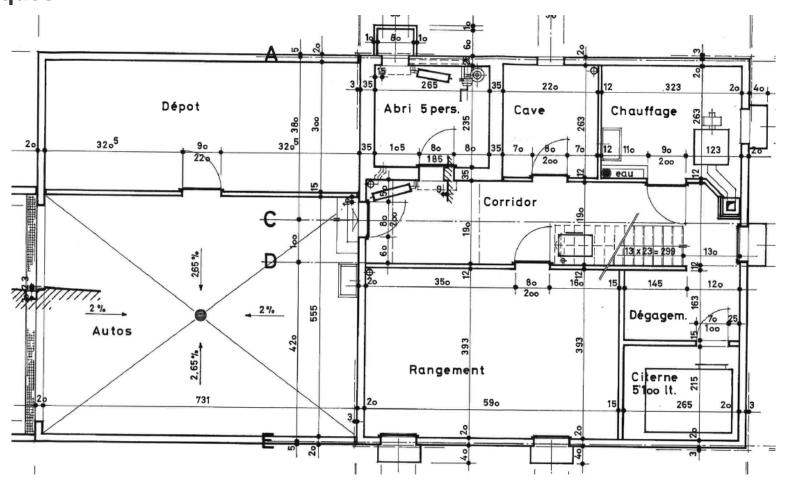
Sol c/ext (13 m²): $U = 0.8 \text{ W/m}^2\text{K}$

Sol c/NC (84 m²): $U = 0.4 \text{ W/m}^2\text{K}$

Consommation énergétique

Consommation avant travaux:

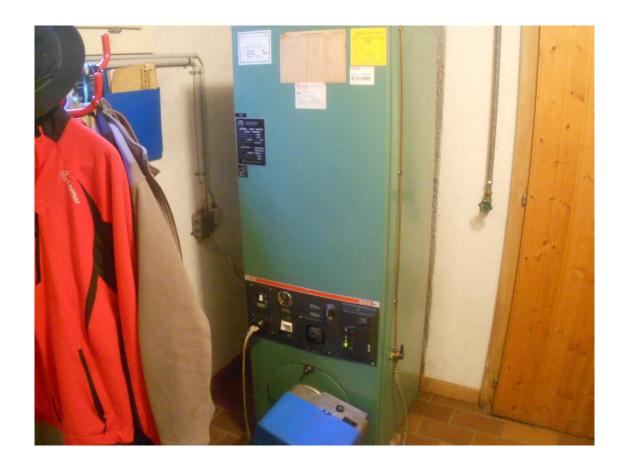
env. 1'600 litres/an Réelles :


• SIA 380/1: env. 25'000 kWh/an

Écart important entre calcul théorique et consommations réelles qui s'explique par le comportement du maître d'ouvrage qui chauffe le strict minimum et sait bien tirer partie des apports solaires importants au travers de sa façade Sud

Locaux techniques

Émission de chaleur

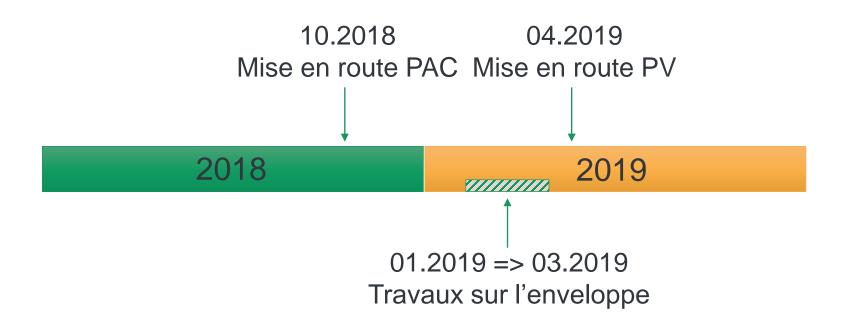

Chauffage au sol

Production de chaleur

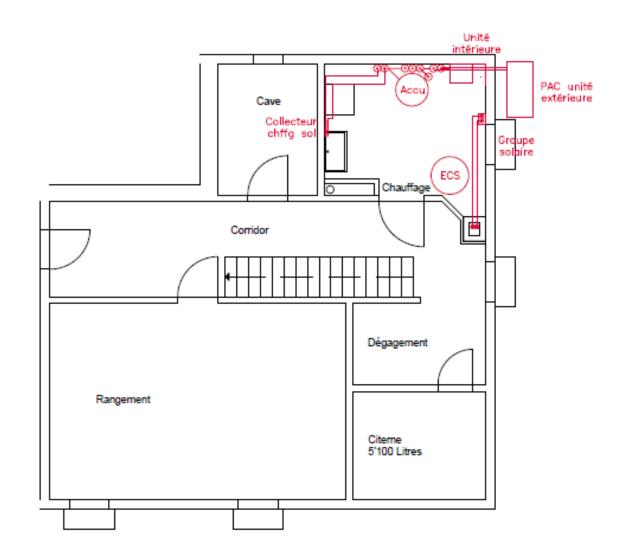
Chaudière mazout de 1979 et de 26 kW pour chauffage et ECS

Récapitulatif

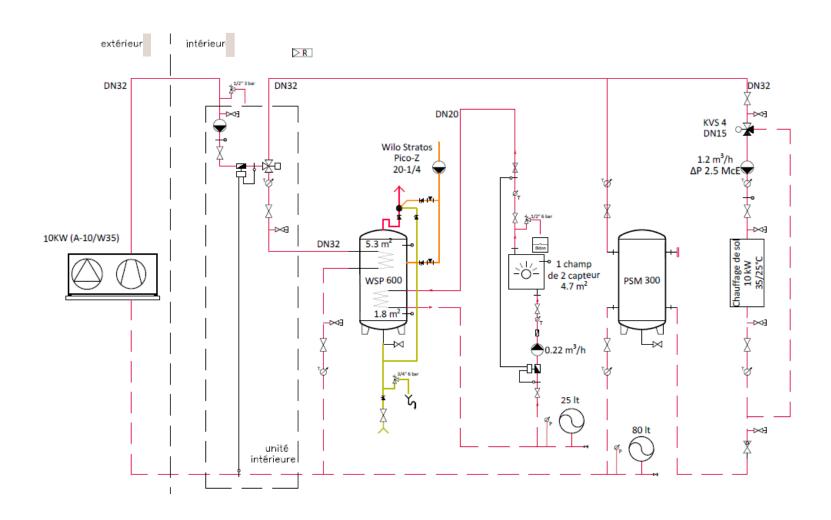
- Enveloppe thermique bien isolée (P_{th} <10 kW_{th}),
- Entretien nécessaire en toiture (tuiles Eternit)
- Système de chauffage centralisé, émission par le sol
- Cheminée d'apparat (foyer ouvert)
- Production d'ECS centralisée dans le sous-sol
- Locaux techniques : chaufferie 8 m², local citerne 5'000 litres
- Forts apports solaires au Sud
- Altitude 724 m
- Horizon dégagé
- Maître de l'ouvrage âgé, aux finances limitées, mais avec des convictions écologiques et de l'intérêt pour les nouvelles technologies



Projet retenu


- Entretien de l'enveloppe comprenant :
 - Renforcement de l'isolation du toit
 - Remplacement du velux par un triple vitrage
- Mise en place d'une pompe à chaleur air-eau
- => Consommation prévue : 15'000 kWh/an
- Couverture solaire photovoltaïque (5 kWc) sur pan Sud
- Couverture solaire thermique (4.7 m²) sur pan Sud

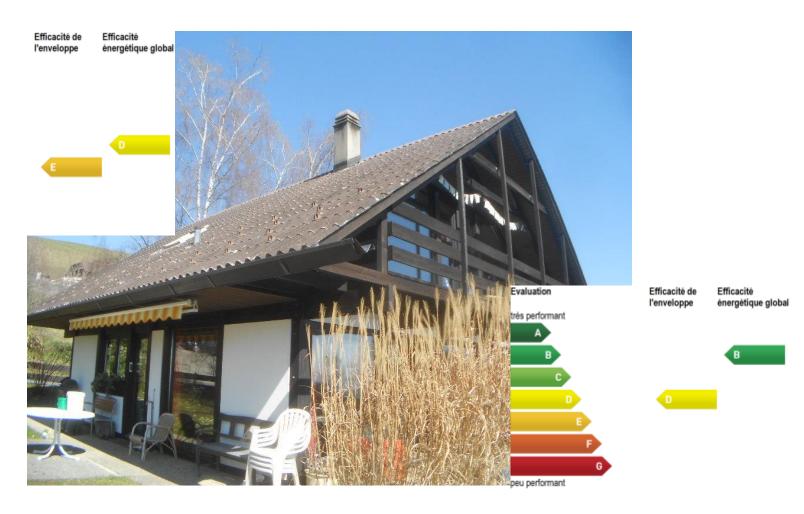
Planning des travaux



Chauffage

Chauffage

Chauffage


Toiture

Bilan global

Aspects économiques

Chauffage : coûts 40'000 CHF comprenant :

Pompe à chaleur 10 kW
 CHF 25'000.-

Panneaux solaires thermiques
 CHF 11'500.-

Divers (raccords, démontage, etc.)
 CHF 8'000.-

• Rabais CHF -4'500.-

Travaux annexes:

Maçonnerie CHF 3'500.-

Raccordements électriques
 CHF 6'500.-

Menuiserie CHF 1'200.-

Total CHF 51'200.-

Aspects économiques

Projet	Coût TTC	Subventions*	Déductions**	Total
Projet réalisé	51 kCHF	-6 kCHF	-14 kCHF	31 kCHF
Remplacement	20 kCHF	-	-6 kCHF	14 kCHF

Investissement net: 17 kCHF

Coûts énergétiques annuels (chauffage et ECS) :

• avant travaux : 2,5 kCHF/an

 $RSI_{p/r \text{ \'etat initial}} = 4.2 \%$ $RSI_{p/r \text{ remplacement}} = 3.5 \%$ après travaux : 1,2 kCHF/an

• remplacement : 1,8 kCHF/an

^{*} Hors enveloppe

^{**}Taux d'imposition considéré 30%

^{***}Tarif de rachat considéré 12 cts/kWh

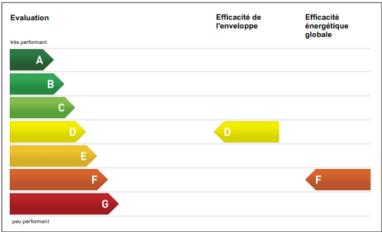
Retour sur ce projet

Solution qui présentait un bon compromis investissement/facilité d'exploitation/bilan environnemental pour le propriétaire

Choix du solaire thermique en plus de la pompe à chaleur pour limiter au maximum sa consommation électrique

Problème esthétique au niveau du choix de l'emplacement du module extérieur

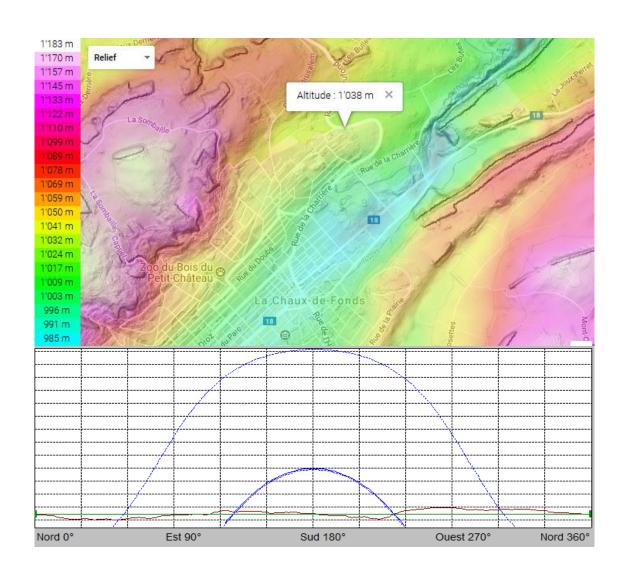
Problème au niveau du raccordement des panneaux solaires



CECE Cas n°2 : villa des années 1980

Etat physique et énergétique

- Maison individuelle
- 1986
- SRE = 230 m^2
- 4 habitants
- La Chaux-de-Fonds
- Orientation Est/Ouest
- Altitude 1'030 m
- Chauffage électrique direct
- Cheminée de salon peu utilisée
- Boiler électrique pour l'ECS
- Tuiles Eternit à remplacer
- Isolation périphérique dégradée
- Fenêtres en partie déjà remplacées



CEECB Cas n°2 : villa des années 1980

Exposition

CECE Cas n°2 : villa des années 1980

Sous-sol

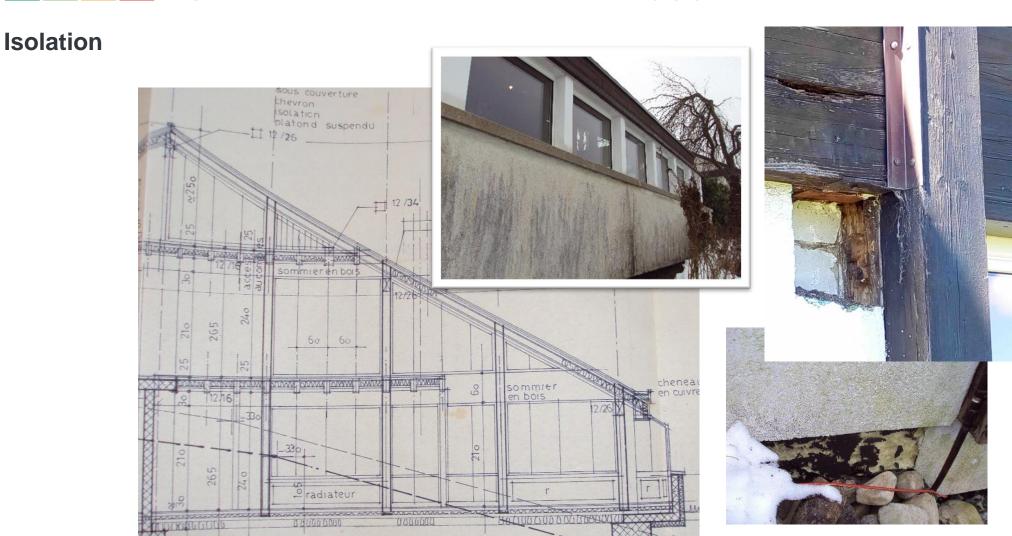
CEECE Cas n°2 : villa des années 1980

Potentiel solaire

CEECE Cas n°2 : villa des années 1980

Toitures

Cas n°2 : villa des années 1980


Façades

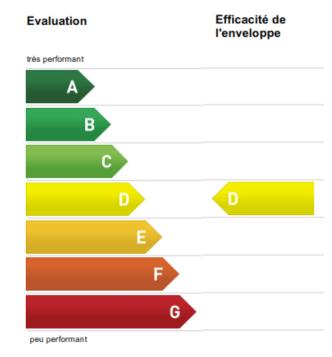
CEECB Cas n°2 : villa des années 1980

CECE Cas n°2 : villa des années 1980

Isolation

Toiture: $U = 0.25 \text{ W/m}^2\text{K}$ (45 m^2 Sud et 93 m^2 Nord)

Murs c/ext.: $U = 0.27 \text{ W/m}^2\text{K}$


Murs c/NC: $U = 2.8 \text{ W/m}^2\text{K}$

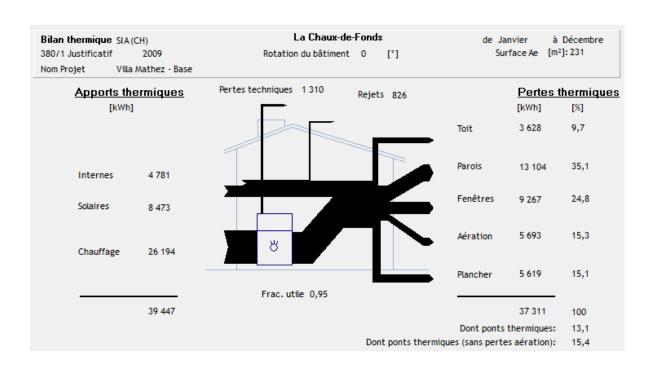
Fenêtres anciennes : $U_w = 2.8 \text{ W/m}^2\text{K}$

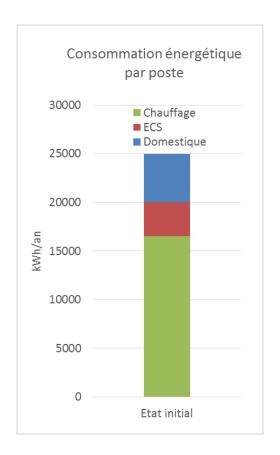
 $U_{\rm w} = 1.3 \, {\rm W/m^2 K}$ Fenêtres récentes :

Sol c/terre: $U = 0.25 \text{ W/m}^2\text{K}$

Sol c/NC: $U = 1.2 \text{ W/m}^2\text{K}$

CECB Cas n°2 : villa des années 1980

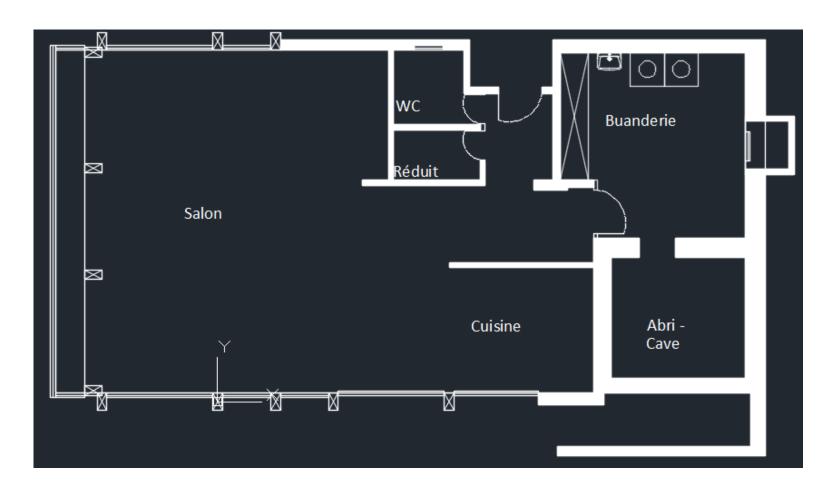

Consommation énergétique


- Consommation avant travaux: env. 25'000 kWh/an

Électricité domestique : estim. 5'000 kWh/an

Eau chaude sanitaire : estim. 3'500 kWh/an

 Chauffage électrique : solde 16'500 kWh/an

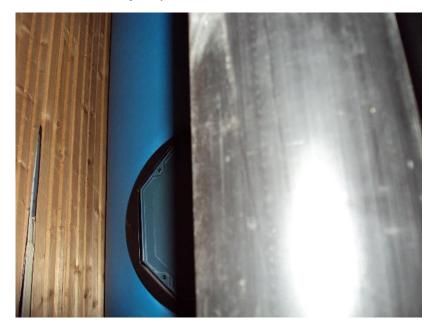


Cas n°2 : villa des années 1980

Locaux techniques

CEECB Cas n°2 : villa des années 1980

Production/émission de chaleur



Cas n°2 : villa des années 1980

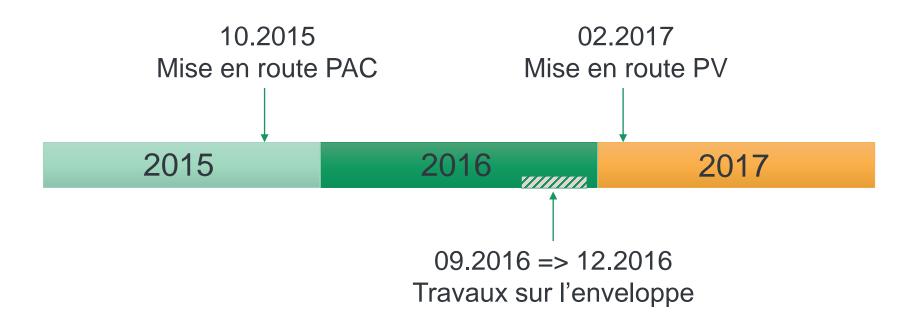
Eau chaude sanitaire

Centralisée (boiler électrique), dans les combles

CECE Cas n°2 : villa des années 1980

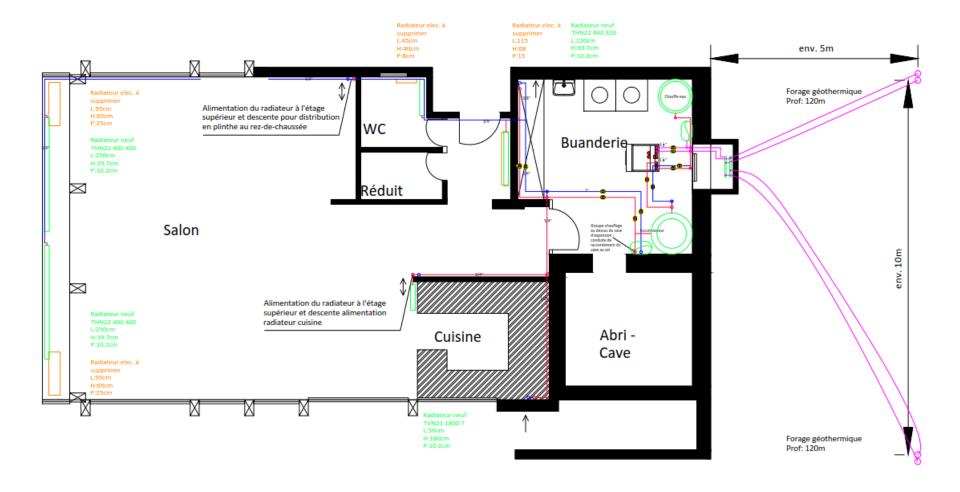
Récapitulatif

- Enveloppe thermique bien isolée (P_{th} < 8 kW_{th}),
- Entretien nécessaire : tuiles Eternit, isolation périphérique
- Système électrique décentralisé, pas de réseau hydraulique
- Cheminée d'apparat (foyer ouvert)
- Production d'ECS centralisée dans les combles
- Locaux techniques : buanderie 8 m², réduit extérieur 3 m², abri PC
- **Exposition Est/Ouest**
- Altitude > 1'000 m
- Toiture exposée principalement Nord
- Horizon dégagé
- Maître de l'ouvrage aisé, actif, féru de nouvelles technologies, régulièrement absent pour voyages d'affaires

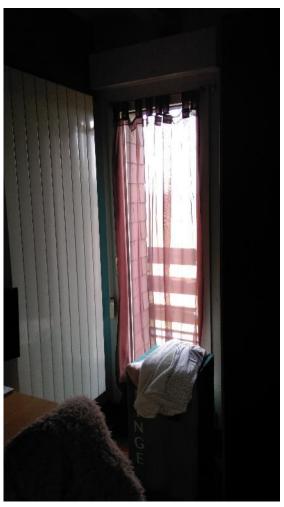


Projet retenu

- Entretien de l'enveloppe comprenant :
 - Renforcement de l'isolation du toit
 - Renforcement de l'isolation des façades
 - Remplacement des anciennes fenêtres (1/3)


- Mise en place d'une pompe à chaleur géothermique
 - => Consommation prévue : 12'000 kWh/an
- Couverture solaire photovoltaïque sur toitures Nord et Sud
 - => Production prévue : 14'000 kWh/an

Planning des travaux



Chauffage

Chauffage

Enveloppe

Enveloppe

Bilan global

Aspects économiques

Chauffage: coûts 78'000 CHF comprenant:

Forages 2 x 120 m CHF 25'000.-

Pompe à chaleur 12 kW
 CHF 25'000.-

Nouvelle distribution de chaleur (y.c. ECS)
 CHF 28'000.-

Travaux annexes:

• Travaux de maçonnerie CHF 5'000.-

Terrassement (raccordement des sondes)
 CHF 4'000.-

Raccordements électriques
 CHF 4'000.-

Total CHF 91'000.-

CHF 45'000.-

+Photovoltaïque

Aspects économiques

Projet	Coût TTC	Subventions*	Déductions**	Total
Villa +14 MWh/an	91 kCHF	-3 kCHF	-27 kCHF	61 kCHF
Villa +6,6 MWh/an	105 kCHF	-7 kCHF	-30 kCHF	68 kCHF
Villa -2,2 MWh/an	136 kCHF	-30 kCHF	-32 kCHF	74 kCHF

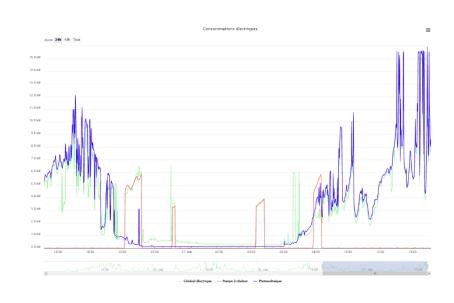
=> Coût du pan Sud (6 kWc): CHF 7'000.-

=> Coût du pan Nord (12 kWc): CHF 6'000.-

Coûts énergétiques annuels (chauffage et ECS) :

• avant travaux : 4,5 kCHF/an

• après travaux : 0,5 kCHF/an RSI = 5,4 %


^{*} Hors enveloppe

^{**}Taux d'imposition considéré 30%

Retour sur ce projet

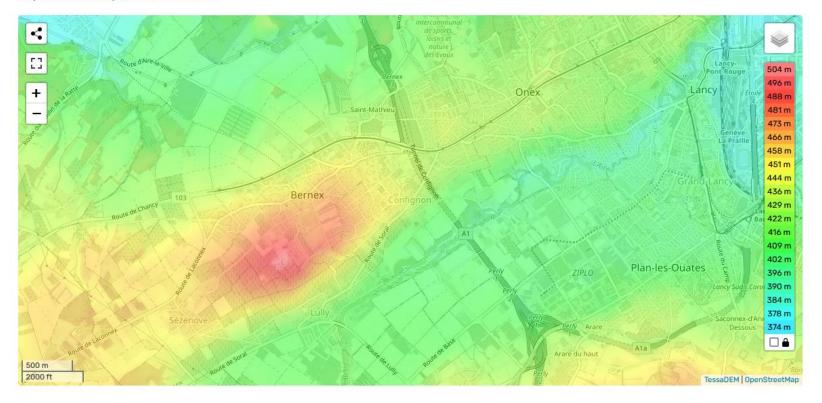
- La villa produit 5'000 à 7'000 kWh de plus que ce qu'elle consomme :
 - solution photovoltaïque intégrée Swisspearl plus onéreuse mais également plus puissante (20 kWc),
 - la part initiale d'électricité dévolue à la production de chaleur a peut-être été surestimée,
 - les adolescentes se sont éloignées de la maison...
 - Retour des propriétaires :
 - ils sont ravis du confort thermique
 - Autoconsommation à optimiser

Etat physique et énergétique

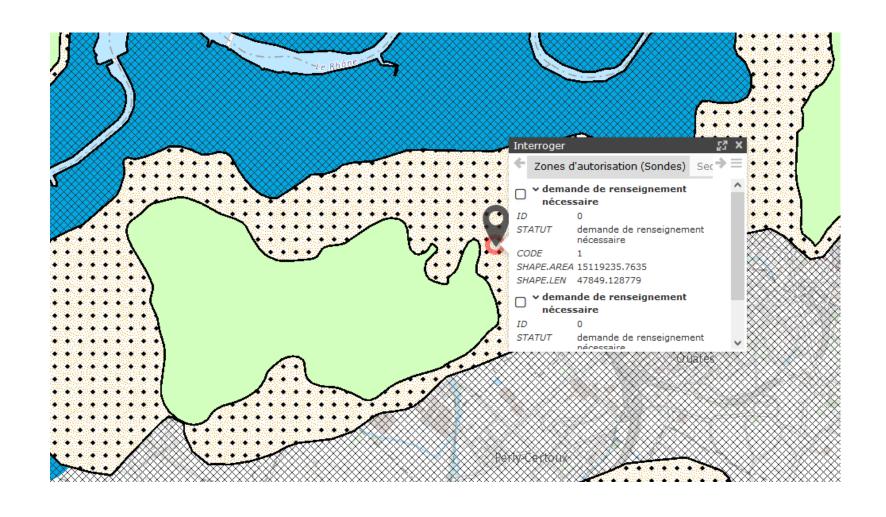
- Immeuble collectif (18 appartements)
- 1961
- $SRE = 1'203 \text{ m}^2$
- Confignon (GE)
- Orientation façade principale : Sud-Est / Nord-Ouest
- Fenêtre doubles vitrage PVC de 2007 (Ug=1,1)
- IDC 700 MJ/m2an
- Chaudière mazout de 1995
- Ventilation naturelle des pièce humides dans conduits maçonnés
- Production d'eau chaude centralisée (sans bouclage)
- Enveloppe état moyen
- Rénovation HPE en site occupé

Evaluation

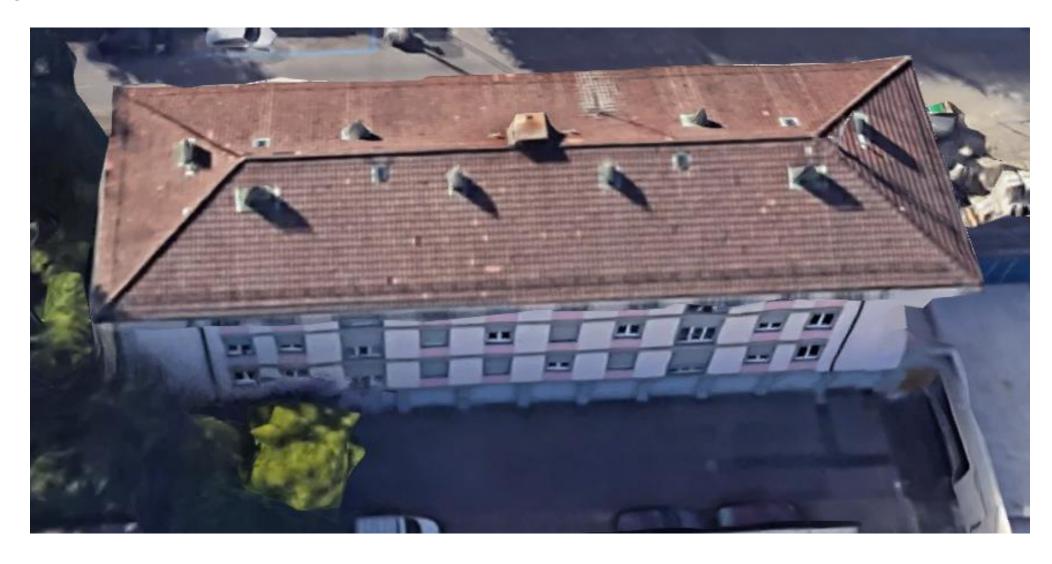
très performant



Altitude

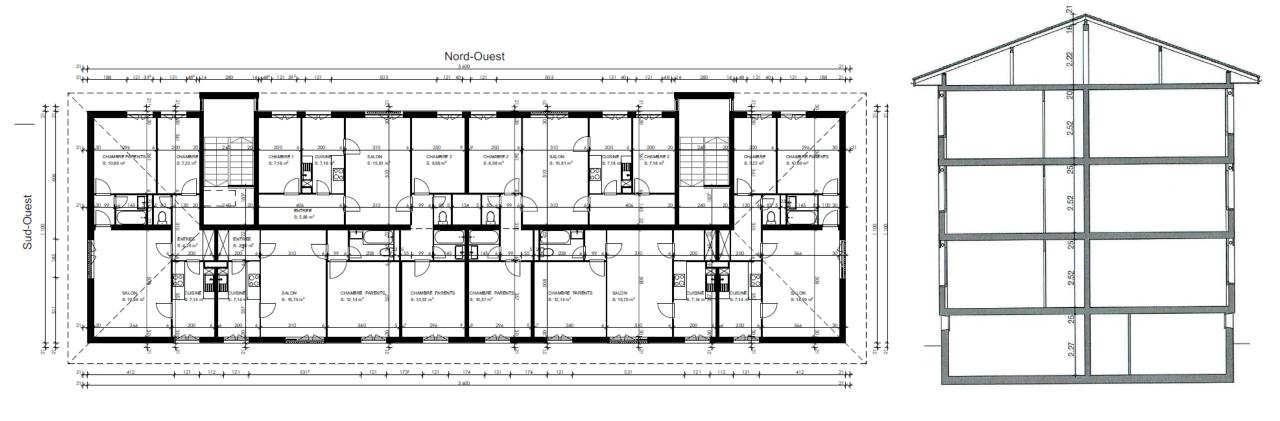

Carte topographique Confignon

Cliquez sur la carte pour afficher l'altitude.



Sous-sol

Toiture

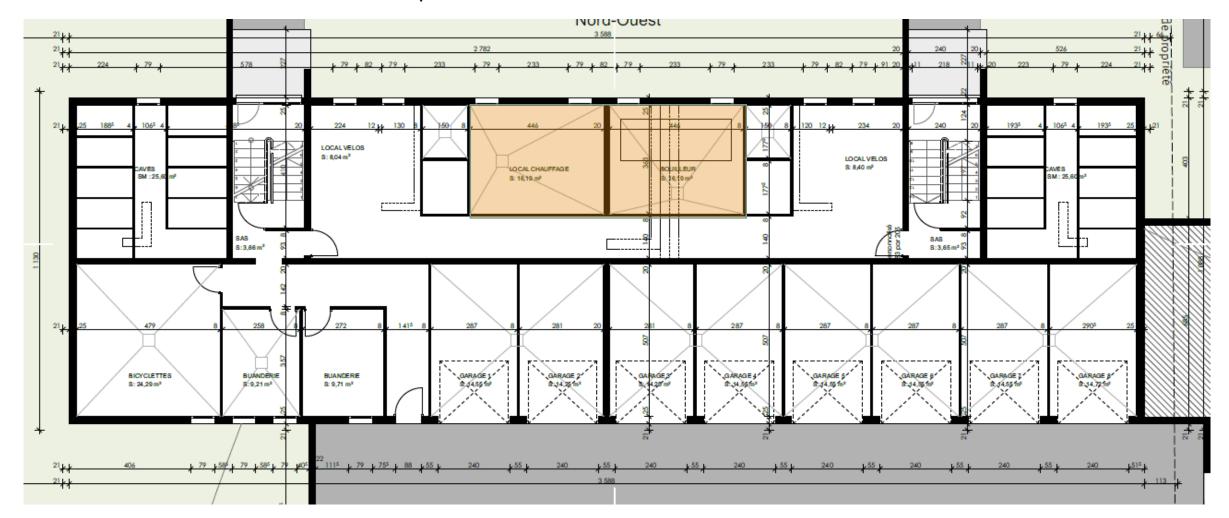


Façades

Plan type

Isolation

Type d'élément de construction	Surface nette [m²]	Valeur U [W/(m²K)]	
Plafond contre locaux non chauffés	401	1.9	Evaluation
Mur contre air extérieur	629	0.89	très performant
Mur contre terrain ≤ 2m	7	3.6	В
Mur contre local non chauffé	57	2.7	
Fenêtres et portes, verticaux	180	2.2	No. of the second of the second
Sol contre air extérieur	5	3.3	
Sol contre terrain ≤ 2m	25	5.4	peu performant
Sol contre locaux non chauffés	371	2.0	


Consommation énergétique

- Consommation avant travaux: 27'000 litres de mazout /an
- SRE 3x401 m² => 22,2 litres mazout/m²_{SRE}

Locaux techniques

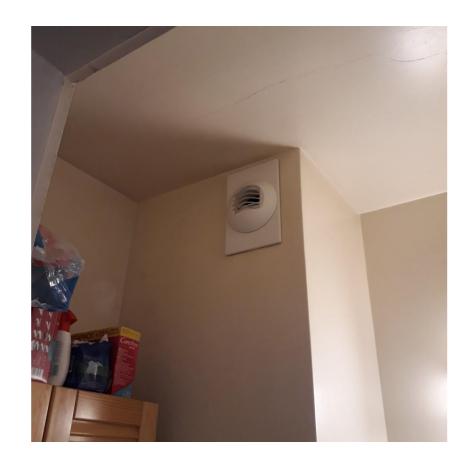
Consommation avant travaux : près de 2 GWh/an

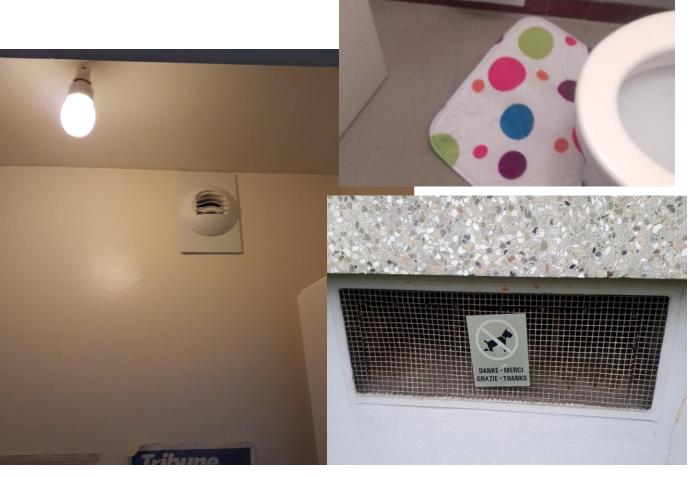
Production de chaleur

Mazout avec boiler 500 litres intégré

Émission de chaleur

haute température, sans vannes thermostatiques



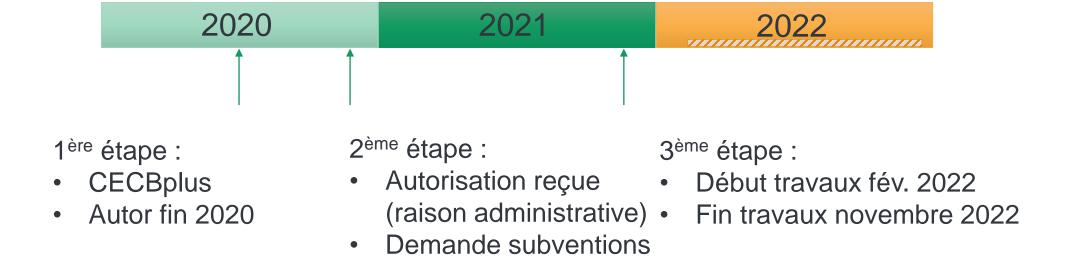


Ventilation

naturelle dans conduits maçonné (enternit amianté) avec amenée d'air en partie basse et sortie en partie haute

Récapitulatif

- Enveloppe thermique vétuste au niveau énergétique
- Production de chaleur mazout à remplacer
- Accès chauffage à distance possible dans 2-3 ans
- Autorisations de forage incertaines (sur dossier)
- Ventilation 100% naturelle via conduits maçonnée dans les pièces humides
- Locaux techniques 2x16 m²
- Toiture 4 pans avec combles non exploités
- Objectifs du maître de l'ouvrage (fondation au travers d'une gérance «proactive») :
 - rénovation HPE exemplaire
 - coût limités
 - délais courts
 - en site occupé



Projet retenu

- Rénovation complète de l'enveloppe comprenant :
 - Isolation du plancher des combles (semi-praticable)
 - Isolation périphérique des façades (EPS)
 - coffres de volets roulants isolés (autant que faire se peut)
 - Isolation du plafond du sous-sol
- Mais:
 - Conservation des fenêtres de 2007 (Ug=1.0)
- Au niveau technique :
 - 3 pompes à chaleur en cascade Wiessmann AWHI 351
 - Remplacement des radiateurs par des radiateurs 50°C (sauf salles d'eau) pour raison de vétusté
 - Ventilation simple-flux hygroréglable avec monobloc dans les combles et BEA dans coffres de volets roulants; dérogation pour éviter la récupération de chaleur (1'800 m3/h)
 - Solaire thermique et photovoltaïque (HPE nouveau règlement)

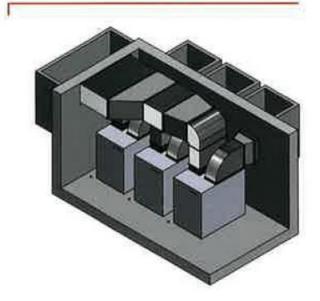
Planning des travaux

Installation de pompe à chaleur

Cas n°3 – Solutions retenues

Liste des PAC

Hersteller:


Viessmann

Chauffage – Production

Besoins après travaux : 50kW

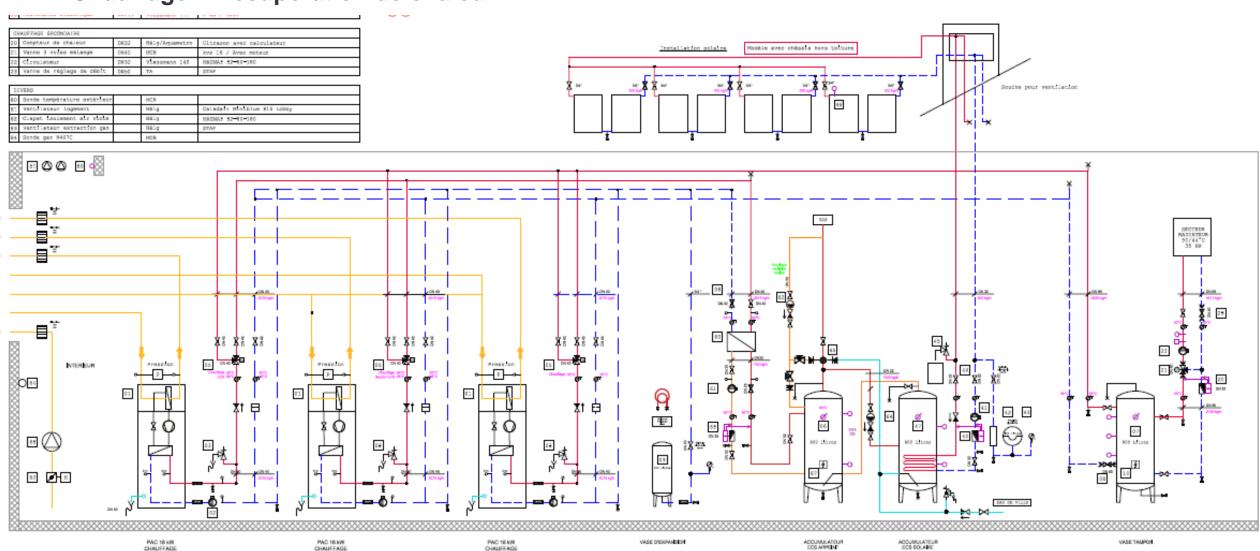
Nom et type de PAC				Тур:	L/W A	WHI 351.A20		
Source de chaleur:			× 🙏 🚏 [Pompe à chaleur air/eau Plusieurs vitesses				
Utilisation (chauffage ou eau chaude sanitai	Chauffage+ECS							
Accumulateur de chaleur		J ■ J ,	<u>.</u>	avec accumulateur chauffage				
Mode de fonctionnement de la PAC				fonctionnement chauffage monovalent				
Température de la source (entrée PAC)	°C	-15	-7	2	7	20		
Valeurs de calcul pour Tdép35°C(Qh/COP):	°C	13.0kW / 2.4	15.3kW / 2.7	18.5kW / 3.2	20.6kW / 3.4	0.0kW / 0.0		
Résultats								
				0.0%				
Part d'énergie électrique pour l'ECS	1.0%	kWh =	130					
Pertes en mode chauffage (démarrage, accu	4%	Etah =	96%					
Pertes en mode préparation d'ECS (démarra	6%	Etaw =	94%					
Durée de fonctionnement de la pompe à chaleur					h/a	1 287		
Part et COP annuel de la pompe à chaleur pour le chauffage ϵ =					JAZ _h =	2.39		
Part et COP annuel de la pompe à chaleur pour l'ECS $\epsilon =$					JAZ _{ww} =	2.53		
COP annuel pour chauffage et ECS (COPa [ch+ECS]) exclu el. add.					-	2.44		

Cascade de 3 appareils WPL 19-241

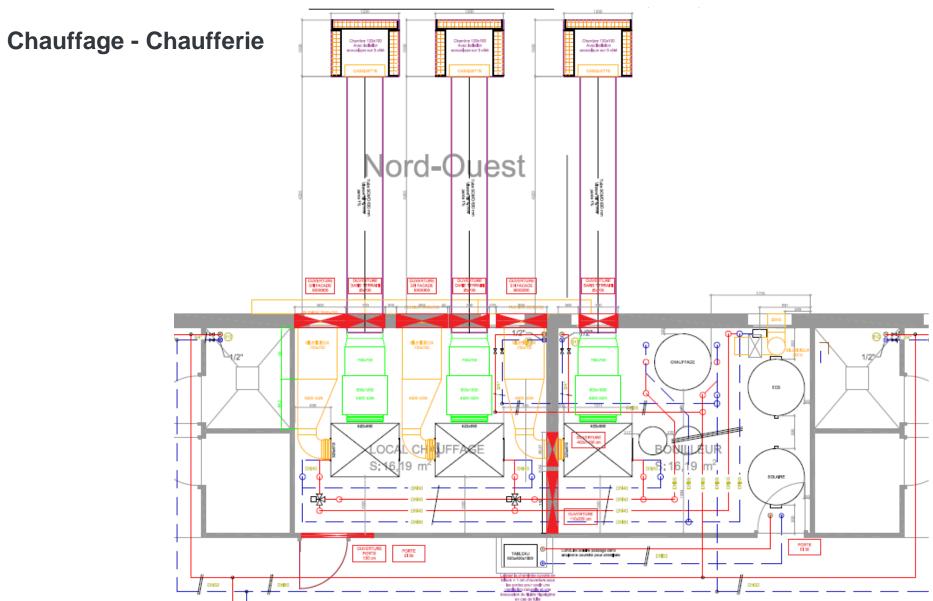
		Genève-Cointrin			
		Habitat collectif			
A _E	m ²	401			
Q _{h,eff}	kWh/m2a	56			
Q _T	kWh/m2a	55			
Q_V	kWh/m2a	36			
	%	5%			
	h/d	0			
10,8	kW				
Q_{ww}	kWh/m2a	31,3			
	%	50%			

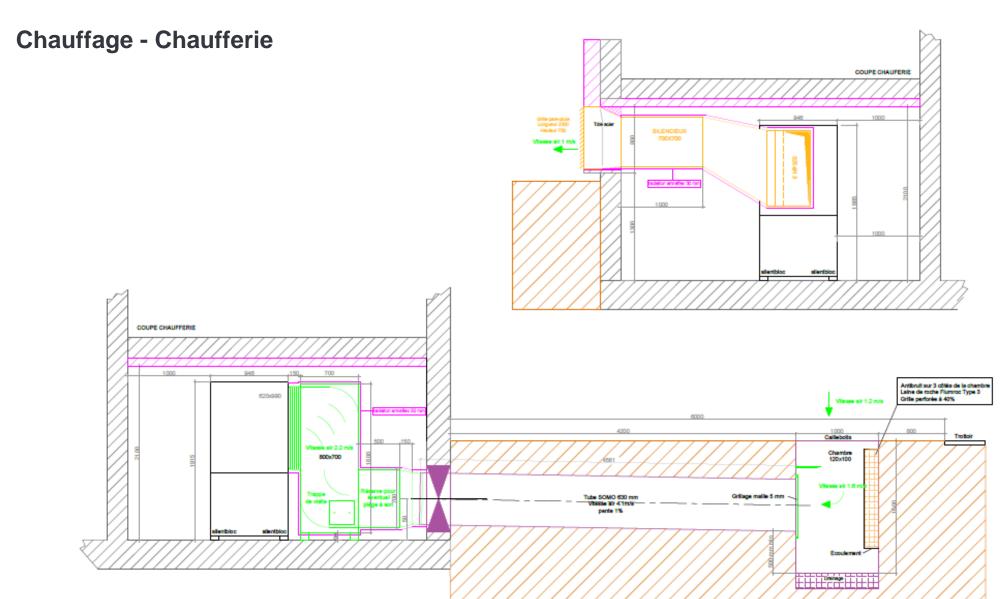
Chauffage – Récupération de chaleur

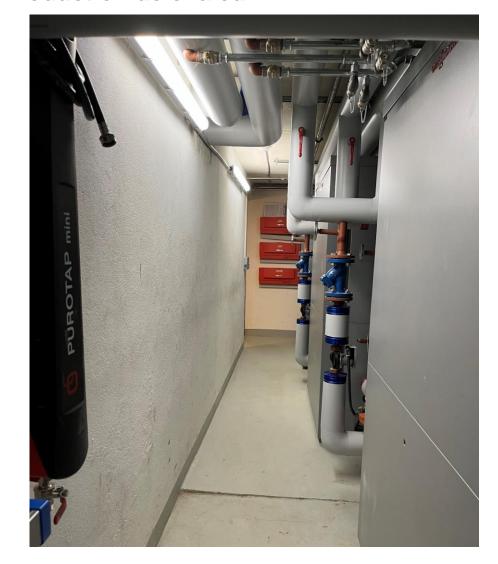
CONCERNE:	Chaum	ont 4-6				CFC NUMERO:	242 & 2	243		
INSTALLATION:	Lot cha	uffage				TOTAL DEVIS:	5			
NUMERO		Α		В		С		D		E
ENTREPRISE										
VILLE										
		Francs		Francs		Francs		Francs		Francs
MONTANT BRUT OFFRE		207 360.00		252 100.00		271 750.00		398 368.00		464 568.00
MONTANT BRUT CORRIGE		207 360.00		252 100.00		271 750.00		398 368.00		464 568.00
FRAIS D' ETUDE %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RABAIS %	0.00	0.00	3.00	7 563.00	4.32	11 749.99	2.00	7 967.36	5.00	23 228.40
ESCOMPTE %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	8 826.79
TOTAL NET 1		207 360.00		244 537.00		260 000.01		390 400.64		432 512.81
PRORATA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ASSURANCE	2.59	5 366.48	0.00	0.00	0.00	0.00	0.00	0.00	2.50	10 812.82
TOTAL NET 2 HT		201 993.52		244 537.00		260 000.01		390 400.64		421 699.99
TOTAL NET 2 HT ARRONDI		201 993.50		244 537.00		260 000.00		390 000.00		420 000.00
TVA	7.70	15 553.50	7.70	18 829.35	7.70	20 020.00	7.70	30 030.00	7.70	32 340.00
TOTAL NET 3 TTC		CHF 217 547.00		CHF 263 366.35		CHF 280 020.00		CHF 420 030.00		CHF 452 340.00
TOTAL NET 3 TTC ARRONDI		CHF 217 547.00		CHF 263 000.00		CHF 280 020.00		CHF 420 030.00		CHF 452 340.00
RANG		1		2		3		4		5
DIFFERENCE EN %		100.00%		120.89%		128.72%		193.08%		207.93%
ECART EN %		0.00%		17.28%		22.31%		48.21%		51.91%


Comprend:

- démontage
- 3 nouvelles PAC
- nouvelle distribution horizontale
- nouveaux émetteurs
- solaire thermique
- boiler ECS + ballon de préchauffage


Hors coûts de maçonnerie!

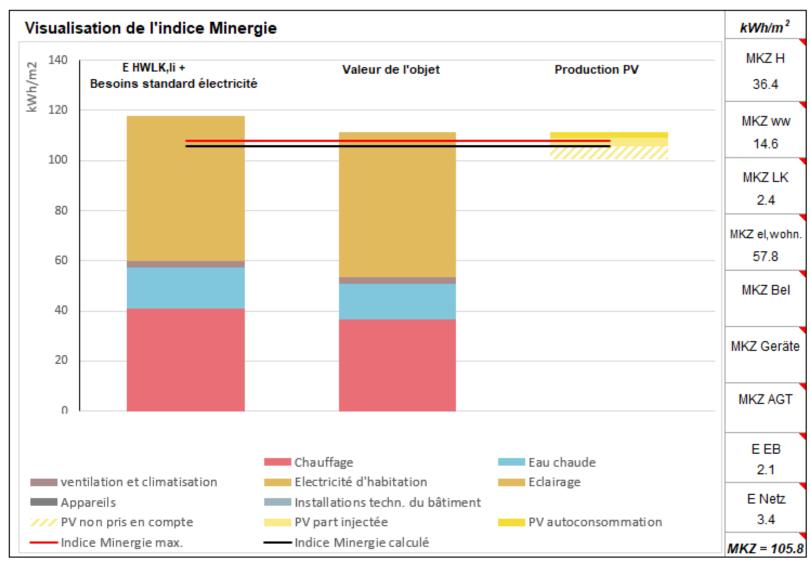

Chauffage – Récupération de chaleur

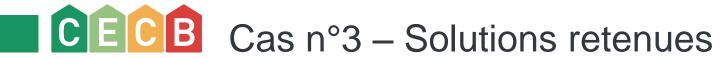

Production de chaleur

Production de chaleur

Production de chaleur

Enveloppe




Enveloppe

Bilan après travaux

Retour sur cette solution

Il est tout à fait possible de remplacer le fossile par des pompes à chaleur sous réserve :

- D'avoir la place disponible en chaufferie, et éventuellement aux abords (plus facile si toit plat) (ici 32 m²; les pompes à chaleur en cascades, silencieux et réservoirs prennent de la place)
- De trouver le matériel adapté (gammes limitées dans ces puissances, attention aux infos constructeur)
- De prendre des mesures significatives en matière d'économie d'énergie
- Eventuellement d'adapter la distribution de chaleur => travaux intrusifs le cas échéant
- De traiter correctement l'acoustique
 (prises d'air, évacuation, liaisons avec les techniques, isolation du local technique)
- De porter un attention particulière à la question des pertes de charges des ventilateurs (si gainages) et à la question du dégivrage

Remarque : dans le cas présent auraient également pu fonctionner les solutions bois énergie (<70kW) et géothermie sous réserve de place disponible et d'autorisation. Attention chaudière provisoire.

Merci pour votre attention!

CECB Questions / Discussion ouverte

Enquête de satisfaction

Merci de prendre 5 minutes pour compléter notre questionnaire de satisfaction

Votre aide à la décision